Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Novel Mechanism of Manganese-Induced Neurological Dysfunction Discovered

30.08.2006
For decades, scientists have known that chronic exposure to high concentrations of the metal manganese can cause movement abnormalities resembling symptoms of Parkinson’s disease, but apparently without the same neuron damage characteristic of Parkinson’s patients.

Now, researchers from the Johns Hopkins Bloomberg School of Public Health and Thomas Jefferson University have discovered a potential explanation to why these neurological symptoms may occur with manganese exposure. The study found that dopamine neurons in the brain of animals exposed to manganese do not release dopamine when stimulated, suggestive of a dysfunctional dopamine system even though the neurons do not show the damage present with Parkinson’s disease.

Dopamine is a key neurotransmitter necessary for normal motor function. In addition, the researchers found that effects of manganese exposure occurred at blood concentrations in the upper range of levels documented in children and adults with environmental or occupational exposure. The study is published in the online version of the journal Experimental Neurology.

Manganese is a metal used in welding, battery making and in other industrial settings. In Canada, it replaced lead as a gasoline additive. Manganese, in the form of MMT, is approved in the United States as a gasoline additive but is not in use. The symptoms of “manganism” include behavioral and memory disturbances as well as Parkinson’s-like symptoms. Tremors occur with movement as opposed to the resting tremors typical of Parkinson’s disease.

“These findings may provide an explanation for some of the differences between manganism and idiopathic Parkinson’s disease, as well as why patients with manganese-induced neurological symptoms do not seem to respond to traditional Parkinson’s therapies,” said the study’s lead author, Tomás R. Guilarte, PhD, a professor in the Department of Environmental Health Sciences at the Bloomberg School of Public Health.

For the study, researchers observed a group of animals that were given incremental levels of manganese. The animals were monitored for behavioral changes and Positron Emission Tomography (PET) was used to assess various markers of dopamine neurons in the brain. According to the study, in addition to decreased in vivo dopamine release, manganese exposure produced subtle deficits in behavior and fine motor function.

“More work is needed to understand the relationship between the changes in behavior and the alterations in the dopamine system,” explained Jay S. Schneider, professor of pathology, anatomy and cell biology at Thomas Jefferson University and co-author of the study.

“There are other aspects of manganese neurotoxicity that this on-going study is examining that are likely to change the way that we view the risk of manganese exposure today,” said Guilarte.

“Nigrostriatal dopamine system dysfunction and subtle motor deficits in manganese-exposed non-human primates” was written by Tomás R. Guilarte, Ming-Kai Chen, Jennifer L. McGlothan, Tatyana Verina, Dean F. Wong, Yun Zhou, Mohab Alexander, Charles A. Rohde, Tore Syversen, Emmanuel Decamp, Amy Jo Koser, Stephanie Fritz, Heather Gonczi, David W. Anderson and Jay S. Schneider.

Funding was provided by a grant from the National Institute of Environmental Health Sciences.

Public Affairs media contacts for the Johns Hopkins Bloomberg School of Public Health: Tim Parsons at 410-955-6878 or paffairs@jhsph.edu.

Tim Parsons | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>