Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Association between famine and schizophrenia may yield clues about inherited diseases and conditions

03.08.2006
The higher risk of schizophrenia among offspring of expectant mothers living through famine could help us understand the genetic basis for that debilitating mental disorder, a group of researchers argue in a commentary piece in the Aug. 2 issue of JAMA. The finding also supports a theory of medical genetics in which diseases and conditions can be caused by hundreds of different genetic mutations in any number of human genes.

Epidemiologists have studied two major famines in the 20th century: the Dutch Hunger Winter of 1944-45, which was brought about by the Nazi occupation in World War II; and the Chinese famine in 1959-61, a consequence of the failed Great Leap Forward. During both famines, birth rates dropped precipitously. In addition, among children born to women who were pregnant during the famine, the incidence of schizophrenia increased two-fold.

The expectant mothers were not receiving enough folate and other vital micronutrients during the famine, researchers believe, and that deficiency caused new genetic mutations to appear at exceptionally high rates. New mutations in genes related to brain function could lead to development of schizophrenia

"Folate has a major role in genetic processes -- gene transcription and regulation, DNA replication, and the repair of damaged genetic information," explained co-author Dr. Jack McClellan, an associate professor of psychiatry at the University of Washington and medical director of the Child Study and Treatment Center in Tacoma, Wash. "If folate is missing from a mother's diet, that could lead to genetic mutations in the developing fetus."

Nearly three-quarters of the human body's 20,000 or so genes are involved in the development or functioning of the brain in some way, and about one-fourth are specifically brain-related genes -- leaving many possible locations where new genetic mutations would affect the brain. Since schizophrenia has its genesis in the development and distribution of neurons, McClellan said, the areas of the genome related to those processes are probably where researchers will find disease-related mutations.

In addition to urging future research in this area, McClellan and his co-authors, Dr. Ezra Susser of Columbia University and Dr. Mary-Claire King, the American Cancer Society Professor of Medical Genetics and Genome Sciences at the UW, argue that schizophrenia is the latest in a string of disorders showing the nature of inheritance of genetic conditions. The conventional wisdom on psychiatric disorders is that most cases are caused by a handful of common genetic mutations that occur in a small number of genes.

"The problem with that model is that it doesn't correspond to clinical experience," said King. "Studies of families with many complex diseases, like breast cancer, epilepsy, or inherited hearing loss, indicate that many different genetic mutations in many different genes can lead to each disease."

Researchers jokingly refer to this hypothesis as the Anna Karenina model of medical genetics -- each unhealthy family is unhealthy in its own way.

This alterative model of genetics helps explain other aspects of schizophrenia as well. In nearly all populations, the disease has a fairly stable rate of incidence. But in populations with maternal famine, that rate increases significantly. If there are many different possible mutations that could cause schizophrenia, and the number of mutations in a population goes up (due to malnutrition, for example), then one would expect the rate of the disease to rise, as it did during the two famine events.

In addition, schizophrenia can affect the rate of reproduction in people with the condition -- they often have difficulty developing and maintaining relationships with others, so tend to have smaller families and fewer children than other people. If only a small number of common genetic mutations were responsible for schizophrenia, scientists would expect them to become less and less common over time, as people with the condition had fewer children who would carry on those mutations. Instead, the risk of schizophrenia has stayed at about the same level, suggesting that new genetic mutations may crop up periodically to cause the illness anew.

Schizophrenia does run in families, but most people with the condition do not have close relatives with schizophrenia. For many schizophrenia patients, their illness seems to come from out of the blue. This pattern also suggests that new, different mutations appear in different families, McClellan said, and may continue for a few generations before dying out. That could make it hard to determine which genetic mutations cause the disease.

"Normally, if you're looking for what causes an illness, you gather everyone with that illness together and look for mutations they share," said McClellan. "That may be why it has been so hard to find the genetic basis for schizophrenia. The cause may be different from one case to another."

Justin Reedy | EurekAlert!
Further information:
http://www.washington.edu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>