Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mosquito immune system examined

12.06.2006
Same immune factors used to fight malaria parasite and infectious pathogens

Mosquitoes employ the same immune factors to fight off bacterial pathogens as they do to kill malaria-causing Plasmodium parasites, according to a study by researchers at the Johns Hopkins Bloomberg School of Public Health. The study identified several genes that encode proteins of the mosquito's immune system.

All of the immune genes that were involved in limiting infection by the malaria parasites were also important for the resistance to bacterial infection.

However, several immune genes that were essential for resistance to bacterial infection did not affect Plasmodium infection. According to the authors, the findings add to the understanding of mosquito immunity, and could contribute towards the development of malaria-control strategies based on blocking the parasite in the mosquito. The study is published in the June 8, 2006, edition of PloS Pathogens.

"Mosquitoes that transmit malaria can kill large portions of Plasmodium parasites, and some mosquito strains are totally resistant to Plasmodium. However, our observations suggest that mosquitoes have not evolved a highly-specific defense against malaria parasites. Instead, they employ factors of their antimicrobial defense system to combat the Plasmodium parasite," said George Dimopoulos, Ph.D., senior author of the study and assistant professor with the Bloomberg School's Malaria Research Institute. "The degree of mosquito susceptibility to Plasmodium, and thereby its capacity to transmit malaria, may therefore partly depend on the mosquito's microbial exposure, which can differ greatly between different geographic sites. Potentially, we could boost the mosquito's capacity to fight the malaria parasite by exposing it to certain microbes or compounds that resemble the microbe molecules responsible for immune activation."

In this study, the investigators also analyzed the immune responses of Anopheles gambiae mosquitoes to infection with different Plasmodium parasite species, one that causes malaria in humans and another that only infects rodents. The study revealed that mosquitoes mostly employ the same immune factors in defending against the two different Plasmodium species. Only a few immune genes were more important in the defense against either one of the two species.

"The mosquito's immune system appears to employ a variety of antimicrobial defense factors (genes) against the malaria parasite, and can therefore significantly limit infection. The parasite, on the other hand, is capable of evading these defenses to a degree that allows its transmission by the mosquito. Now we have to figure out how to make the mosquito's immune system more effective in killing malaria parasites at multiple stages that would render the development of evasive mechanisms impossible for the parasite," said Dimopoulos.

Tim Parsons | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>