Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ritalin packs punch by elevating norepinephrine, suppressing nerve signal transmissions

31.05.2006


Methylphenidate (Ritalin) elevates norepinephrine levels in the brains of rats to help focus attention while suppressing nerve signal transmissions in the sensory pathways to make it easier to block out extraneous stimuli, a Philadelphia research team has found.



Their report in the Journal of Neurophysiology helps explain how a stimulant aids people with attention deficit and hyperactivity disorders to improve their focus without increasing their motor activity. Methylphenidate, prescribed under the brand name Ritalin, has been used for more than 20 years, mostly in children, to treat attention deficit hyperactivity disorder (ADHD) and attention deficit disorder (ADD). The drug can also help people who don’t suffer either disorder to attend better to a cognitive task.

Despite its wide use, little is known about how the drug, a chemical cousin of amphetamines, produces its therapeutic effects. Researchers want to unlock the mystery of why the drug has the paradoxical effect of decreasing hyperactive behavior and increasing the ability to focus, even though it is a stimulant, said Barry Waterhouse, the study’s senior author.


"We’re developing a series of behavioral and electrophysiological assays for examining the actions of drugs like methylphenidate," Waterhouse said. "If we can show exactly how methylphenidate works, we may be able to produce even more effective drugs and provide a better understanding of the physiology underlying ADHD."

The study, using rats, is the first to document the increase in norepinephrine and suppression of the neuronal response in this sensory pathway of the brain. "Methylphenidate enhances noradrenergic transmission and suppresses mid- and long-latency sensory responses in the primary somatosensory cortex of awake rats," by Philadelphia-based researchers Candice Drouin, University of Pennsylvania; Michelle Page, Thomas Jefferson University; and Barry Waterhouse, Drexel University College of Medicine appears online in the Journal of Neurophysiology, published by The American Physiological Society.

From whiskers to brain

The researchers stimulated rats’ whiskers while recording the activity of the neurons in the sensory pathways that convey this sensation from the whiskers to the cerebral cortex. They compared the rat’s sensory pathway response to the whisker stimulation when receiving two different doses of methylphenidate. They found that both the low and moderate doses of methylphenidate:

  • Elevated norepinephrine in the area of the brain that processes information related to whisker movement. Norepinephrine helps transmit sensory information from the periphery to the brain.
  • Suppressed the long latency phase of the brain’s neuronal response to whisker-related sensory stimuli. Suppression of the sensory neuronal response in this way is believed to help filter extraneous stimuli, Waterhouse explained. With the extraneous stimuli out of the way, the individual is better able to attend to the important stimuli.

In addition, the researchers found that the higher dose caused the rats to increase motor activity, while the lower dose did not.

Scientists still have much to learn about methylphenidate, which has an impact on neural circuits throughout the entire brain, not just the sensory pathway studied in this paper, Waterhouse noted. The changes that occur in this sensory pathway may affect other areas of the brain and changes in other areas of the brain may affect this pathway. In addition to sensory pathways, other scientists are studying how the drug affects cognitive and emotional areas of brain.

Next steps

"This experiment adds to our knowledge of what the drug is doing at the cellular level and gives us a springboard to other studies," Waterhouse said. "One question now is, how does the individual’s perception of what is an important stimulus factor into the equation?"

Researchers in this area keep in touch and share their results, Waterhouse said. One group, for example, is looking at the drug’s effects on dopamine and norepinephrine in the prefrontal cortex, he noted. These results will eventually have to be combined, as changes in one area of the brain are likely to affect other areas.

"We’ve been thinking about this for a long time," Waterhouse said of his research. "We hope to have a good idea of the drug’s action when we put it all together."

One broad question that intrigues researchers is whether ADHD traces back to the same area of the brain as attention deficit disorder, a similar condition but one in which hyperactivity isn’t a symptom.

They also want to know whether Ritalin has any toxic or long-lasting effects, not only for ADHD patients, but also for individuals taking the drug who do not suffer from ADHD or ADD. Methylphenidate use is on the rise among college students who solicit prescriptions from friends or siblings diagnosed with ADHD and use the drug to postpone fatigue and stay alert and focused while studying for exams or completing projects, Waterhouse said.

Christine Guilfoy | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>