Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bone and cartilage growth to blame for heart valve disease

13.04.2006


Northwestern researcher’s study points to active rather than passive process

Research to be published in the April 18 issue of the Journal of the American College of Cardiology provides the first explanation of an active rather than passive process that leads to heart valve degeneration, furthering a Northwestern researcher’s effort to lead a paradigm shift in the medical community’s beliefs about the cause of valve disease.

Heart valve disease is caused not by a ’wear and tear’ phenomenon, but by an inflammatory process likely triggered by high cholesterol that stimulates certain cells to reprogram into bone cells in the aortic valve and cartilage cells in the mitral valve, says principal investigator Nalini Rajamannan, MD, newly appointed director of the Center for Heart Valve Disease in the Bluhm Cardiovascular Institute of Northwestern Memorial Hospital and assistant professor of medicine, Northwestern University Feinberg School of Medicine, who examined diseased mitral and aortic valves removed during surgery for the study.



"Common wisdom in the medical community has always been that thickening of the mitral valves was part of the aging process as deposits of calcium, a mineral found in the blood, built up on the valves. Therefore, research has never focused on preventing the problem," says Dr. Rajamannan. "Currently the only option is to surgically repair or replace the damaged valves. Our findings open the door to the idea that medical therapies such as statins may be able to play a role in preventing or slowing the process and curtailing the need for surgery."

Valvular heart disease is on the rise with the aging of the United States population, and is second only to coronary artery disease as a cause for open heart surgery. Heart valve disease leads to 100,000 surgeries in the U.S. each year to repair or replace damaged valves. Mitral valve disease is a leading cause of atrial fibrillation, which is a major culprit in strokes and heart failure. Aortic valve disease can lead to heart failure, arrhythmia, infections in the heart, and sudden death may occur in 15 to 20 percent of people who have symptoms.

Dr. Rajamannan has focused her research for the past seven years on advancing the knowledge of mechanisms of aortic and mitral valve disease using animal models and human studies. "I wanted to know why diseased valves had were hardened with a glassy whitish appearance – totally different than healthy tissue, which indicated to me that the actual structure of the valves had changed," she says. Dr. Rajamannan has been awarded over $750,000 in grants from the NIH and the American Heart Association to pursue this research.

Dr. Rajamannan’s laboratory was the first to treat animals with calcifications in heart valves with medications called statins, the same drugs that are currently used to treat high cholesterol. In an early pioneering study, animals treated with statins had significantly less heart valve disease than the control animals that were not treated. The results from the animal studies and now with the human valves demonstrate that valvular heart disease has an active biology which can be treated with medications similar to that of coronary artery disease.

The current wisdom is that mitral valve insufficiency (leaking of the valve) was caused by degenerative changes over the course of time – more or less, wear and tear. Dr Rajamannan’s unique observations indicate that the process of valve degeneration is instead an active process, linked to inflammation and cellular growth, that shares similar risk factors to hardening of the arteries (atherosclerosis).” says Robert Bonow, MD, co-director of the Bluhm Cardiovascular Institute. “This suggests that there may be medical treatments in the future that could either treat this condition or prevent it from developing.”

This research was completed with the support of an American Heart Association Grant-in-Aid (0350564Z) and a grant from the US National Institutes of Health (1K08HL073927-01).

Dr. Rajamannan’s research will be featured at the American College of Cardiology’s 2006 Heart Valve Summit being held June 15-17 in Chicago, which will bring together several of the world’s leading cardiologists and cardiac surgeons to provide a comprehensive review of recent advances in the treatment of valvular heart disease.

Amanda Widtfeldt | EurekAlert!
Further information:
http://www.nmh.org

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>