Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bone and cartilage growth to blame for heart valve disease

13.04.2006


Northwestern researcher’s study points to active rather than passive process

Research to be published in the April 18 issue of the Journal of the American College of Cardiology provides the first explanation of an active rather than passive process that leads to heart valve degeneration, furthering a Northwestern researcher’s effort to lead a paradigm shift in the medical community’s beliefs about the cause of valve disease.

Heart valve disease is caused not by a ’wear and tear’ phenomenon, but by an inflammatory process likely triggered by high cholesterol that stimulates certain cells to reprogram into bone cells in the aortic valve and cartilage cells in the mitral valve, says principal investigator Nalini Rajamannan, MD, newly appointed director of the Center for Heart Valve Disease in the Bluhm Cardiovascular Institute of Northwestern Memorial Hospital and assistant professor of medicine, Northwestern University Feinberg School of Medicine, who examined diseased mitral and aortic valves removed during surgery for the study.



"Common wisdom in the medical community has always been that thickening of the mitral valves was part of the aging process as deposits of calcium, a mineral found in the blood, built up on the valves. Therefore, research has never focused on preventing the problem," says Dr. Rajamannan. "Currently the only option is to surgically repair or replace the damaged valves. Our findings open the door to the idea that medical therapies such as statins may be able to play a role in preventing or slowing the process and curtailing the need for surgery."

Valvular heart disease is on the rise with the aging of the United States population, and is second only to coronary artery disease as a cause for open heart surgery. Heart valve disease leads to 100,000 surgeries in the U.S. each year to repair or replace damaged valves. Mitral valve disease is a leading cause of atrial fibrillation, which is a major culprit in strokes and heart failure. Aortic valve disease can lead to heart failure, arrhythmia, infections in the heart, and sudden death may occur in 15 to 20 percent of people who have symptoms.

Dr. Rajamannan has focused her research for the past seven years on advancing the knowledge of mechanisms of aortic and mitral valve disease using animal models and human studies. "I wanted to know why diseased valves had were hardened with a glassy whitish appearance – totally different than healthy tissue, which indicated to me that the actual structure of the valves had changed," she says. Dr. Rajamannan has been awarded over $750,000 in grants from the NIH and the American Heart Association to pursue this research.

Dr. Rajamannan’s laboratory was the first to treat animals with calcifications in heart valves with medications called statins, the same drugs that are currently used to treat high cholesterol. In an early pioneering study, animals treated with statins had significantly less heart valve disease than the control animals that were not treated. The results from the animal studies and now with the human valves demonstrate that valvular heart disease has an active biology which can be treated with medications similar to that of coronary artery disease.

The current wisdom is that mitral valve insufficiency (leaking of the valve) was caused by degenerative changes over the course of time – more or less, wear and tear. Dr Rajamannan’s unique observations indicate that the process of valve degeneration is instead an active process, linked to inflammation and cellular growth, that shares similar risk factors to hardening of the arteries (atherosclerosis).” says Robert Bonow, MD, co-director of the Bluhm Cardiovascular Institute. “This suggests that there may be medical treatments in the future that could either treat this condition or prevent it from developing.”

This research was completed with the support of an American Heart Association Grant-in-Aid (0350564Z) and a grant from the US National Institutes of Health (1K08HL073927-01).

Dr. Rajamannan’s research will be featured at the American College of Cardiology’s 2006 Heart Valve Summit being held June 15-17 in Chicago, which will bring together several of the world’s leading cardiologists and cardiac surgeons to provide a comprehensive review of recent advances in the treatment of valvular heart disease.

Amanda Widtfeldt | EurekAlert!
Further information:
http://www.nmh.org

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>