Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Do magnetic impulses stimulate haemopoiesis?

17.02.2006


Research into the condition and composition of cells in the marrow and blood vessels.



The hematopoietic system always reacts keenly to external actions, especially to penetrating radiation. The number of hematopoietic cells of all types (both dividing and ripening) increased in the marrow of all irradiated mice in this experiment. The researchers do not exclude the possibility that hematopoietic cells divide more rapidly and go quicker through all development stages under the influence of magnetic impulses. The higher the magnetic radiation dose, the more active its cells divided and the more weakly differentiated the precursor cells in the marrow.

Within 24 hours after irradiation was discontinued, the number of cells being in the last stage of maturation returned back to the reference level, and the number of dividing and weakly differentiated hematopoietic cells decreased practically by twice. The researchers assumed that pulsed magnetic field exposure stimulates haemopoiesis, but stimulation stops when irradiation is ceased.


The quantity of leucocytes increased in the blood of irradiated mice, which is not surprising as the leucocyte quantity depends on the organism’s functional state. The effect becomes more apparent not immediately after irradiation, as it was in case of marrow cells, but in 24 hours. Thus, 24 hours after a weekly stay in the pulsed magnetic field, leucocyte quantity in the mice’s blood increased twofold.

The researchers emphasize that their investigation touches upon far from all aspects of pulsed magnetic field influence on blood and the haematopoietic system. Specifically, the researchers did not analyze the state of mice’s health, although the growth of leucocyte quantity is often the evidence of inflammatory diseases. The hematopoietic system’s reaction to a long-standing extreme load is unknown either. After lengthy irradiation, haemopoiesis efficiency decreased twofold, but how soon it would be restored to normal level? These and other questions are still pending.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>