Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Do magnetic impulses stimulate haemopoiesis?

17.02.2006


Research into the condition and composition of cells in the marrow and blood vessels.



The hematopoietic system always reacts keenly to external actions, especially to penetrating radiation. The number of hematopoietic cells of all types (both dividing and ripening) increased in the marrow of all irradiated mice in this experiment. The researchers do not exclude the possibility that hematopoietic cells divide more rapidly and go quicker through all development stages under the influence of magnetic impulses. The higher the magnetic radiation dose, the more active its cells divided and the more weakly differentiated the precursor cells in the marrow.

Within 24 hours after irradiation was discontinued, the number of cells being in the last stage of maturation returned back to the reference level, and the number of dividing and weakly differentiated hematopoietic cells decreased practically by twice. The researchers assumed that pulsed magnetic field exposure stimulates haemopoiesis, but stimulation stops when irradiation is ceased.


The quantity of leucocytes increased in the blood of irradiated mice, which is not surprising as the leucocyte quantity depends on the organism’s functional state. The effect becomes more apparent not immediately after irradiation, as it was in case of marrow cells, but in 24 hours. Thus, 24 hours after a weekly stay in the pulsed magnetic field, leucocyte quantity in the mice’s blood increased twofold.

The researchers emphasize that their investigation touches upon far from all aspects of pulsed magnetic field influence on blood and the haematopoietic system. Specifically, the researchers did not analyze the state of mice’s health, although the growth of leucocyte quantity is often the evidence of inflammatory diseases. The hematopoietic system’s reaction to a long-standing extreme load is unknown either. After lengthy irradiation, haemopoiesis efficiency decreased twofold, but how soon it would be restored to normal level? These and other questions are still pending.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Health and Medicine:

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>