Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging changes treatment for lower back pain

01.02.2006


A simple diagnostic imaging procedure can help identify patients with lower back pain who would benefit from spinal injections and spare those who would not, according to a study appearing in the February issue of Radiology.



Single photon emission computed tomography (SPECT) shows abnormal activity of cells in the spine, which can help doctors identify problems that may be causing a patient’s symptoms.

According to the National Institute of Neurological Disorders and Stroke, lower back pain is the most common cause of work-related disability and a leading contributor to job-related absenteeism in the United States.


Approximately 85 percent of adults suffer from back pain at some time during their lives. Chronic lower back pain is often caused by degenerative changes in the spine and is commonly treated by steroid and anesthetic injections to the small joints of the spine called the facet joints.

"Facet joint injections can be a good short-term treatment alternative in some patients, but these injections don’t help all patients, are relatively expensive and can cause complications," said the study’s lead author, Spiros G. Pneumaticos, M.D., assistant professor of orthopedic surgery at Baylor College of Medicine in Houston, Texas.

"Bone SPECT can help identify the patients with lower back pain who would benefit from facet joint injections. The patients with negative bone SPECT should be spared the injections," he said.

For a bone SPECT exam, the patient receives an injection into the vein with a radioactive material that travels to the bones. The patient lies underneath the camera, and pictures are taken for approximately 30 minutes. The SPECT images illuminate abnormalities in cell function.

Dr. Pneumaticos and colleagues studied 47 patients (23 men and 24 women) with low back pain, who were scheduled for facet joint injections. The patients were randomly divided into two groups. The first group (Group A) had bone SPECT prior to injection. The second group (Group B) did not. Patients showing positive SPECT results (Group A1) received injections at the levels of the lumbar spine showing abnormalities on the scan. Patients showing no facet joint abnormality on SPECT (Group A2) along with Group B patients received injections at the levels indicated by the referring physician.

After one month, pain reduction was significantly higher in Group A1 patients than in the other two groups. In addition, only 27 facets required injection, a sizable decrease from the referring physician recommendation of 60, resulting in a $326 reduction in overall Medicare cost per patient.

"Our study showed that patients with a positive bone SPECT have an excellent response to facet injections when injected at the abnormalities seen on SPECT, while patients with a negative SPECT have a much smaller chance of improving," Dr. Pneumaticos said.

"Until now, doctors have had no reliable way to determine which patients will actually benefit from the injections. This study shows that a relatively simple test can help identify patients who will benefit, and this helps avoid the use of facet injections in patients that would not benefit or could possibly be hurt by the procedure," he said.

Heather Babiar | EurekAlert!
Further information:
http://www.rsna.org

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>