Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging changes treatment for lower back pain

01.02.2006


A simple diagnostic imaging procedure can help identify patients with lower back pain who would benefit from spinal injections and spare those who would not, according to a study appearing in the February issue of Radiology.



Single photon emission computed tomography (SPECT) shows abnormal activity of cells in the spine, which can help doctors identify problems that may be causing a patient’s symptoms.

According to the National Institute of Neurological Disorders and Stroke, lower back pain is the most common cause of work-related disability and a leading contributor to job-related absenteeism in the United States.


Approximately 85 percent of adults suffer from back pain at some time during their lives. Chronic lower back pain is often caused by degenerative changes in the spine and is commonly treated by steroid and anesthetic injections to the small joints of the spine called the facet joints.

"Facet joint injections can be a good short-term treatment alternative in some patients, but these injections don’t help all patients, are relatively expensive and can cause complications," said the study’s lead author, Spiros G. Pneumaticos, M.D., assistant professor of orthopedic surgery at Baylor College of Medicine in Houston, Texas.

"Bone SPECT can help identify the patients with lower back pain who would benefit from facet joint injections. The patients with negative bone SPECT should be spared the injections," he said.

For a bone SPECT exam, the patient receives an injection into the vein with a radioactive material that travels to the bones. The patient lies underneath the camera, and pictures are taken for approximately 30 minutes. The SPECT images illuminate abnormalities in cell function.

Dr. Pneumaticos and colleagues studied 47 patients (23 men and 24 women) with low back pain, who were scheduled for facet joint injections. The patients were randomly divided into two groups. The first group (Group A) had bone SPECT prior to injection. The second group (Group B) did not. Patients showing positive SPECT results (Group A1) received injections at the levels of the lumbar spine showing abnormalities on the scan. Patients showing no facet joint abnormality on SPECT (Group A2) along with Group B patients received injections at the levels indicated by the referring physician.

After one month, pain reduction was significantly higher in Group A1 patients than in the other two groups. In addition, only 27 facets required injection, a sizable decrease from the referring physician recommendation of 60, resulting in a $326 reduction in overall Medicare cost per patient.

"Our study showed that patients with a positive bone SPECT have an excellent response to facet injections when injected at the abnormalities seen on SPECT, while patients with a negative SPECT have a much smaller chance of improving," Dr. Pneumaticos said.

"Until now, doctors have had no reliable way to determine which patients will actually benefit from the injections. This study shows that a relatively simple test can help identify patients who will benefit, and this helps avoid the use of facet injections in patients that would not benefit or could possibly be hurt by the procedure," he said.

Heather Babiar | EurekAlert!
Further information:
http://www.rsna.org

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>