Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cause of ongoing pain discovered

24.01.2006


New research shows that it is undamaged nerve fibres that cause ongoing spontaneous pain, not those that are injured.



These unexpected findings, by Dr Laiche Djouhri, Professor Sally Lawson and colleagues from the University of Bristol, UK, are reported in the Journal of Neuroscience today [25 January, 2006].

Previous research into ongoing chronic pain has tended to focus on the damaged nerve fibres after injury or disease and overlooked the intact fibres. This new understanding may help pharmaceutical companies formulate novel pain killers.


Professor Lawson said: “The cause of this ongoing pain and why it arises spontaneously was not understood before. Now that we know the type of nerve fibres involved, and especially that it is the undamaged fibres that cause this pain, we can examine them to find out what causes them to continually send impulses to the brain. This should help in the search for new analgesics that are effective for controlling ongoing pain.”

Ongoing pain is a burning or sharp stabbing/shooting pain that can occur spontaneously after nerve injury. Unlike ‘evoked’ pain caused, for example, by hitting your thumb with a hammer, ongoing pain is particularly difficult to live with because it is often impossible to treat with currently available pain killers.

Djouhri and Lawson show that the nerve cells responsible are ‘nociceptors’ or damage detectors. There are thousands of these nerves cells, each of which has a very long, fine nerve fibre emerging from it. These fibres run within nerves and connect the skin or other tissues to the spinal cord.

When activated through damage or disease, these nerve fibres fire electrical impulses that travel along the fibre from the site of injury to the spinal cord, from where information is sent to the brain. The faster the undamaged fine fibres fire, the stronger the ongoing pain becomes.

Dr Djouhri added: “The cause of this firing appears to be inflammation within the nerves or tissues, caused by dying or degeneration of the injured nerve fibres within the same nerve.”

The mechanism described by Djouhri and Lawson occurs following nerve injury and in nerve and tissue inflammation. Further research is now needed to establish how generally this mechanism may contribute to ongoing pain associated with a wide variety of diseases such as back pain or shingles.

Cherry Lewis | alfa
Further information:
http://www.bristol.ac.uk

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>