Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique puts brain-imaging research on its head

09.12.2005


It’s a scene football fans will see over and over during the bowl and NFL playoff seasons: a player, often the quarterback, being slammed to the ground and hitting the back of his head on the landing.



Sure, it hurts, but what happens to the inside of the skull? Researchers and doctors long have relied upon crude approximations made from test dummy crashes or mathematical models that infer – rather loosely – what happens to the brain during traumatic brain injury or concussion.

But the truth is that the state of the art in understanding brain deformation after impact is rather crude and uncertain because such methods don’t give any true picture of what happens. Now, mechanical engineers at Washington University in St. Louis and collaborators have devised a technique on humans that for the first time shows just what the brain does when the skull accelerates.


What they’ve done is use a technique originally developed to measure cardiac deformation to image deformation in human subjects during repeated mild head decelerations. Picture, if you will, a mangled quarterback’s occipital bone banging the ground, then rebounding. The researchers have mimicked that very motion with humans on a far milder, gentler, smaller scale and captured the movement inside the brain by magnetic resonance imaging (MRI).

Philip Bayly, Ph.D., Lilyan and E. Lisle Hughes Professor in Engineering, Guy Genin, Ph.D., assistant professor of mechanical engineering, and Eric Leuthardt, MD, a Washington University neurosurgeon, tested seven subjects in an MRI and gathered data that show that the brain, connected to the skull by numerous vessels, membranes and nerves at the base, tries to pull away from all those attachments, leading to a significant deformation of the front of the brain. Bayly discussed the group’s findings Nov. 10, 2005, at the annual meeting of the National Neurotrauma Society in Washington, DC.

Brain movie

According to Genin, the subjects are placed in the soft netting of a head guide, and are asked to raise and lower their heads about an inch inside an MRI machine. The process is repeated several times as the MRI pieces together a complete movie of the brain’s response to these skull motions.

"Phil (Bayly) has developed a set of state-of-the-art hardware and software to synchronize and analyze all of these measurements," said Genin. "The systems he has developed will allow us to explore a broad range of questions critical to understanding mild traumatic brain injury."

"It’s an interesting thing that in many occipital impact injuries, people often find the greatest injury in the front of the brain," Bayly said. "That has been a puzzle for a long time and there have been numerous different explanations for it. What we see with the MRI is quite a bit of mechanical deformation in the front of the brain when the skull is hit from the rear. It seems to be because the brain is trying to pull away from some constraints in the front of the brain."

Bayly and his collaborators can apply the levels of deformation they have found with their subjects to in vitro experiments or to animal models to learn even more about brain matter deformation. They have done experiments on humans with the head dropping forward, and plan to study different acceleration profiles, including rotations.

"This method is a starting point that we hope will take the guesswork out of brain matter deformation analysis," Bayly said. "We can now quantify brain deformation from these very low, mild accelerations with MRI. We are working with Washington University School of Medicine faculty in hopes of some day developing therapeutic remedies for traumatic brain injuries and concussions.

"The most immediate application of our data will be in the development and validation of computer simulations of traumatic brain injury, which may ultimately reduce the need for direct experimentation."

Bayly and Genin are collaborating with David Brody, MD, Ph.D., instructor in neurology at the Washington University School of Medicine, and Sheng K. Song, Ph.D., assistant professor of radiology, on other advanced MRI techniques with the hope of finding noninvasive ways to detect and characterize brain injuries.

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>