Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique puts brain-imaging research on its head

09.12.2005


It’s a scene football fans will see over and over during the bowl and NFL playoff seasons: a player, often the quarterback, being slammed to the ground and hitting the back of his head on the landing.



Sure, it hurts, but what happens to the inside of the skull? Researchers and doctors long have relied upon crude approximations made from test dummy crashes or mathematical models that infer – rather loosely – what happens to the brain during traumatic brain injury or concussion.

But the truth is that the state of the art in understanding brain deformation after impact is rather crude and uncertain because such methods don’t give any true picture of what happens. Now, mechanical engineers at Washington University in St. Louis and collaborators have devised a technique on humans that for the first time shows just what the brain does when the skull accelerates.


What they’ve done is use a technique originally developed to measure cardiac deformation to image deformation in human subjects during repeated mild head decelerations. Picture, if you will, a mangled quarterback’s occipital bone banging the ground, then rebounding. The researchers have mimicked that very motion with humans on a far milder, gentler, smaller scale and captured the movement inside the brain by magnetic resonance imaging (MRI).

Philip Bayly, Ph.D., Lilyan and E. Lisle Hughes Professor in Engineering, Guy Genin, Ph.D., assistant professor of mechanical engineering, and Eric Leuthardt, MD, a Washington University neurosurgeon, tested seven subjects in an MRI and gathered data that show that the brain, connected to the skull by numerous vessels, membranes and nerves at the base, tries to pull away from all those attachments, leading to a significant deformation of the front of the brain. Bayly discussed the group’s findings Nov. 10, 2005, at the annual meeting of the National Neurotrauma Society in Washington, DC.

Brain movie

According to Genin, the subjects are placed in the soft netting of a head guide, and are asked to raise and lower their heads about an inch inside an MRI machine. The process is repeated several times as the MRI pieces together a complete movie of the brain’s response to these skull motions.

"Phil (Bayly) has developed a set of state-of-the-art hardware and software to synchronize and analyze all of these measurements," said Genin. "The systems he has developed will allow us to explore a broad range of questions critical to understanding mild traumatic brain injury."

"It’s an interesting thing that in many occipital impact injuries, people often find the greatest injury in the front of the brain," Bayly said. "That has been a puzzle for a long time and there have been numerous different explanations for it. What we see with the MRI is quite a bit of mechanical deformation in the front of the brain when the skull is hit from the rear. It seems to be because the brain is trying to pull away from some constraints in the front of the brain."

Bayly and his collaborators can apply the levels of deformation they have found with their subjects to in vitro experiments or to animal models to learn even more about brain matter deformation. They have done experiments on humans with the head dropping forward, and plan to study different acceleration profiles, including rotations.

"This method is a starting point that we hope will take the guesswork out of brain matter deformation analysis," Bayly said. "We can now quantify brain deformation from these very low, mild accelerations with MRI. We are working with Washington University School of Medicine faculty in hopes of some day developing therapeutic remedies for traumatic brain injuries and concussions.

"The most immediate application of our data will be in the development and validation of computer simulations of traumatic brain injury, which may ultimately reduce the need for direct experimentation."

Bayly and Genin are collaborating with David Brody, MD, Ph.D., instructor in neurology at the Washington University School of Medicine, and Sheng K. Song, Ph.D., assistant professor of radiology, on other advanced MRI techniques with the hope of finding noninvasive ways to detect and characterize brain injuries.

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht FAU researchers demonstrate that an oxygen sensor in the body reduces inflammation
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht 'Icebreaker' protein opens genome for t cell development, Penn researchers find
21.02.2018 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

The RWI/ISL-Container Throughput Index started off well in 2018

22.02.2018 | Business and Finance

FAU researchers demonstrate that an oxygen sensor in the body reduces inflammation

22.02.2018 | Health and Medicine

Histology in 3D: new staining method enables Nano-CT imaging of tissue samples

22.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>