Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Implantable pumps extend lives of patients too sick for transplant

15.11.2005


Pumps implanted into the chest to maintain circulation can significantly extend the lives of the sickest patients in end-stage heart failure who are not candidates for heart transplantation, according to the results of a clinical trial led by Duke University Medical Center cardiologists.



The pumps, known as left ventricular assistant devices (LVADs), are employed when the heart’s left ventricle – the chamber of the heart that pumps blood throughout the body – is too weak to pump enough blood to nourish the body’s tissues. LVADs have been used as successful short-term "bridges to heart transplant" and are increasingly being considered as a long-term heart failure destination therapy, said the researchers.

In the current trial, the researchers found that patients who received LVADs had an average survival time of 10.3 months, compared to 3.1 months for those who did not receive the device. In this group of end-stage heart failure patients, 78 percent died within six months and 90 percent within a year.


"The patients who received the devices not only had a lengthened quantity of life, but they appeared to have an improved quality of life," said Duke cardiologist Joseph Rogers, M.D., who presented the results of the trial Nov. 14, 2005, at the annual scientific session of the American Heart Association meeting in Dallas. "We had patients who were doing the normal activities of life, such driving cars, fishing and golfing."

Patients who were on the LVADs scored significantly higher on standard measures of quality of life than patients in the control group, Rogers said.

"This is a remarkably ill group of patients," Rogers continued. "When you look at the control group, which was receiving the best care medicine has to offer, we can only keep ten percent of them alive after one year. We need to focus on this as a group of patients, since most are still in the prime of life and can still be quite productive."

To be considered for the trial, patients had to be taking powerful intravenous drugs in the hospital just to keep their hearts pumping, and they were also too sick to be considered for a heart transplants. Most were in intensive care units.

"Despite the shortcomings of the device, the results of this trial speak to our ability to improve the functionality for a very sick group of patients," Rogers said. The major complications of LVADs, said the researchers, include stroke, bleeding episodes and infections, especially at the site in the side of the body where the pump is connected to an external power source and computer.

"We already had a lot of data on the device when it was being used as bridge to transplantation," he continued. "We knew it could go for extended periods without problems, and that was the most compelling argument to use for implanting the device in patients who have no other options."

For the trial, researchers enrolled 55 patients from 2000 to 2003. Thirty-seven patients received the device and 18 did not. Patients were on average of 59 years old and as a group their hearts beat at only 14 percent of normal strength. The pump tested in the trial was the Novacor device, which is produced by WorldHeart, Oakland, Calif.

"While the survival time for those patients receiving LVADs was more than three times longer, we even had two patients who are both four years out from implantation," said Rogers. "Furthermore, unlike some earlier studies, there were no catastrophic mechanical failures."

According to Rogers, there are a number of challenges to be addressed before the use of LVADs can be considered as a widespread destination therapy.

The first challenge is selecting appropriate patients, which is crucial, since the patients most likely to survive would be those who are quite sick, but not too sick to be beyond help. This fine line in determining which patients are optimal will need to be defined by future clinical trials, he said. The other challenges pertain to the limitations of LVAD technology.

"Like most new technologies, we’re limited by our power supply," Rogers said, "We need to develop a battery that is not only small enough and powerful enough to be safely implanted into the human body, but one that could be recharged through the skin without burning the skin. That way there would be no external parts, which would greatly reduce the incidence of infection."

Another technological challenge involves the pump itself, Rogers said. The Novacor device is a pulsatile pump which contains blood in a polyurethane sack. The blood is then propelled out of the pump between two pusher plates. However, because of its size, it cannot be used in children or comfortably in small women. Rogers said that numerous pump designs are being tested that are smaller and lighter. Durability will also be an issue, he said, since replacing an LVAD entails just as substantial and involved a surgical procedure as the initial placement.

Duke is currently participating in a number of different trials testing different device models and pumps designs.

Richard Merritt | EurekAlert!
Further information:
http://www.mc.duke.edu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>