Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Meditation associated with increased grey matter in the brain

14.11.2005


Meditation is known to alter resting brain patterns, suggesting long lasting brain changes, but a new study by researchers from Yale, Harvard, Massachusetts General Hospital, and the Massachusetts Institute of Technology shows meditation also is associated with increased cortical thickness.



The structural changes were found in areas of the brain that are important for sensory, cognitive and emotional processing, the researchers report in the November issue of NeuroReport.

Although the study included only 20 participants, all with extensive training in Buddhist Insight meditation, the results are significant, said Jeremy Gray, assistant professor of psychology at Yale and co-author of the study led by Sara Lazar, assistant in psychology at Massachusetts General Hospital.


"What is most fascinating to me is the suggestion that meditation practice can change anyone’s grey matter," Gray said. "The study participants were people with jobs and families. They just meditated on average 40 minutes each day, you don’t have to be a monk."

Magnetic resonance imaging showed that regular practice of meditation is associated with increased thickness in a subset of cortical regions related to sensory, auditory, visual and internal perception, such as heart rate or breathing. The researchers also found that regular meditation practice may slow age-related thinning of the frontal cortex.

"Most of the regions identified in this study were found in the right hemisphere," the researchers said. "The right hemisphere is essential for sustaining attention, which is a central practice of Insight meditation."

They said other forms of yoga and meditation likely have a similar impact on cortical structure, although each tradition would be expected to have a slightly different pattern of cortical thickening based on the specific mental exercises involved.

Jacqueline Weaver | EurekAlert!
Further information:
http://www.yale.edu

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>