Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Vaccine for follicular lymphoma


A team of researchers has demonstrated the clinical efficacy and benefits of a vaccine for a type of blood cancer, follicular lymphoma, amongst first time relapse patients. Specialists from two University of Navarre centres – the University Hospital and the Research Centre for Applied Medicine (CIMA) - have worked jointly since 2001 on the research.

According to Dr. Maurizio Bendandi, the team leader, it is the first time that a vaccine against a type of cancer has been able to change the history of the illness.

More than 5000 persons in Spain diagnosed with this tumour each year

In Spain more than 5000 persons over 40 are annually diagnosed with this type of cancer. Follicular lymphoma is a tumour of the lymphatic system the cells of which present a surface protein – in fact, an immunoglobuline - that can be used as a target. The vaccine, known as idiotypical, is produced from this protein and its aim is to provoke a reaction from the immune system of the patient. Normally the patient does not react against the protein of the tumour given that, as it is a known element, its immune system does not combat it. By means of laboratory techniques we have managed to adhere to the target protein another protein called KLH, obtained from a mollusc. In this way we managed to get the tumoural protein also to be recognised as foreign.

In the case of follicular lymphoma, this protein is a specific tumour antigen. It is postulated that there are also antigens in other tumours but, for the moment, none has been identified solely and exclusively in the tumour cells and, thus, a vaccine against these would also be damaging to healthy tissues.

Stanford University developed an idiotypical vaccine in the seventies in animals and applied it to humans 15 years ago. In 1992 its biological efficacy was tested: it is capable of stimulating the human immune system. In 1999 Dr. Bendandi and other scientists at the US National Cancer Institute demonstrated that this biological efficacy was also clinical. According to the University of Navarre researcher, the vaccine-stimulated immune system itself is capable of killing some tumour cells that had resisted quimiotherapy. It remains to be demonstrated that this result provides a real benefit to the patient.

Better response hoped for than with quimiotherapy only

With the research work carried out at CIMA and the University Hospital it is known that 50% of the patients treated with quimiotherapy relapse within13 months. Moreover, the duration of the response time tends to be shorter between relapses than between the previous ones.

Our research involved 25 patients over the last four and a half years. Of these, 4 patients did not respond to the vaccine and relapsed in the expected time, with another 3 the study of their illness is yet to finish and 18 responded satisfactorily. None of these 18 has relapsed over the two years vaccination.

Research in California, Texas and Navarre

This is the first study of this kind or design to investigate the efficacy of the vaccine in patients suffering relapse, although other clinical trials are being undertaken at two centres in the United States.

The vaccine, administered subcutaneously, is especially useful as a complement to quimiotherapy. There have been attempts to apply the vaccine as a first treatment but the results have not been satisfactory.

In general terms, the procedure followed with patients at the University Hospital was to give them conventional quimiotherapy for 6 months in order to reduce the size of the tumour as much as possible. This was followed by a rest period of between 3 and 6 months in order to reconstitute the immune system. Finally, the vaccine was innoculated every month for three or four months, whereupon the frequency of this dosage was gradually reduced.

Irati Kortabitarte | alfa
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>