Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vaccine for follicular lymphoma

10.11.2005


A team of researchers has demonstrated the clinical efficacy and benefits of a vaccine for a type of blood cancer, follicular lymphoma, amongst first time relapse patients. Specialists from two University of Navarre centres – the University Hospital and the Research Centre for Applied Medicine (CIMA) - have worked jointly since 2001 on the research.



According to Dr. Maurizio Bendandi, the team leader, it is the first time that a vaccine against a type of cancer has been able to change the history of the illness.

More than 5000 persons in Spain diagnosed with this tumour each year


In Spain more than 5000 persons over 40 are annually diagnosed with this type of cancer. Follicular lymphoma is a tumour of the lymphatic system the cells of which present a surface protein – in fact, an immunoglobuline - that can be used as a target. The vaccine, known as idiotypical, is produced from this protein and its aim is to provoke a reaction from the immune system of the patient. Normally the patient does not react against the protein of the tumour given that, as it is a known element, its immune system does not combat it. By means of laboratory techniques we have managed to adhere to the target protein another protein called KLH, obtained from a mollusc. In this way we managed to get the tumoural protein also to be recognised as foreign.

In the case of follicular lymphoma, this protein is a specific tumour antigen. It is postulated that there are also antigens in other tumours but, for the moment, none has been identified solely and exclusively in the tumour cells and, thus, a vaccine against these would also be damaging to healthy tissues.

Stanford University developed an idiotypical vaccine in the seventies in animals and applied it to humans 15 years ago. In 1992 its biological efficacy was tested: it is capable of stimulating the human immune system. In 1999 Dr. Bendandi and other scientists at the US National Cancer Institute demonstrated that this biological efficacy was also clinical. According to the University of Navarre researcher, the vaccine-stimulated immune system itself is capable of killing some tumour cells that had resisted quimiotherapy. It remains to be demonstrated that this result provides a real benefit to the patient.

Better response hoped for than with quimiotherapy only

With the research work carried out at CIMA and the University Hospital it is known that 50% of the patients treated with quimiotherapy relapse within13 months. Moreover, the duration of the response time tends to be shorter between relapses than between the previous ones.

Our research involved 25 patients over the last four and a half years. Of these, 4 patients did not respond to the vaccine and relapsed in the expected time, with another 3 the study of their illness is yet to finish and 18 responded satisfactorily. None of these 18 has relapsed over the two years vaccination.

Research in California, Texas and Navarre

This is the first study of this kind or design to investigate the efficacy of the vaccine in patients suffering relapse, although other clinical trials are being undertaken at two centres in the United States.

The vaccine, administered subcutaneously, is especially useful as a complement to quimiotherapy. There have been attempts to apply the vaccine as a first treatment but the results have not been satisfactory.

In general terms, the procedure followed with patients at the University Hospital was to give them conventional quimiotherapy for 6 months in order to reduce the size of the tumour as much as possible. This was followed by a rest period of between 3 and 6 months in order to reconstitute the immune system. Finally, the vaccine was innoculated every month for three or four months, whereupon the frequency of this dosage was gradually reduced.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>