Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultrasound – a diagnostic tool for space, sports and more

03.11.2005


An ultrasound training program for non-physicians gives astronauts and sports trainers the tools to assess injuries using real-time remote assistance from medical experts.



Researchers with the National Space Biomedical Research Institute (NSBRI) have developed a computer-based training method that teaches non-physicians to operate ultrasound as if they were technicians. Crew members for four International Space Station (ISS) missions have trained with the program and have performed ultrasound techniques while in space. The ultrasound program also has been used by trainers with the Detroit Red Wings hockey team.

“In isolated places like the ISS, we don’t have the luxury of a radiologist or specialist onboard,” said Dr. Scott A. Dulchavsky, a researcher on NSBRI’s Smart Medical Systems Team. “Our goal is to enable someone working in a remote environment to assess and manage an emergency medical condition.”


In space, ultrasound can be used to assess a number of injuries such as trauma to the eye, shoulder or knee, tooth abscesses, broken or fractured bones, a collapsed lung, hemorrhaging, or muscle and bone atrophy. It normally takes 200 hours plus yearly updates to learn to operate ultrasound, but Dulchavsky and his team developed an education method that cuts the time to two-to-three hours a year.

Dulchavsky also sees this ultrasound training method as beneficial to battlefield medics and emergency responders. Injury severity can be assessed and decisions made whether to treat injuries on site or transport to a hospital.

“With remote guidance, we virtually couple a modestly trained operator with an experienced medical expert, essentially making the non-physician the hands of the expert,” said Dulchavsky, chair of the Department of Surgery at Henry Ford Hospital in Detroit. “There is tremendous potential for space medicine and benefits for Earth.”

The program consists of a computer-based instructional presentation on the basics of ultrasound examination and examples of remote guidance. Remote guidance is presented in experiment-specific sections, comparable to visual case studies. “One video session walks you through basic positioning, and the next one might demonstrate how to image a bone,” Dulchavsky said.

After the computer-based instruction, trainees participate in a hands-on session where they perform abdominal and musculoskeletal ultrasound scans. A video stream from the ultrasound device is split between the on-site monitor and the remote location. Watching the simultaneous video feed, the remote medical expert can see the trainee’s ultrasound images. He or she uses voice commands to guide the operator into positioning the probe and fine-tuning the settings to produce clear, useful images. The hands-on sessions are designed to closely simulate ultrasound experiments performed in orbit.

After the initial training, ultrasound operators complete a one-hour refresher course developed by Dulchavsky’s team, called the Onboard Proficiency Enhancement (OPE) program. The OPE employs multi-media instruction similar to the original computer-based training. ISS Expedition 9 crewmembers astronaut Michael Fincke and cosmonaut Gennady Padalka completed the OPE program before doing inflight ultrasound scans of the shoulder. Dulchavsky says the program will soon be one of the medical tools used by the Detroit Tigers baseball club. In addition, the U.S. Olympic Committee recently announced a collaboration with Dulchavsky’s group to create research protocols involving Olympic athletes.

“Our next challenge is to improve the speed and efficiency of diagnosing and treating injury,” Dulchavsky said. “We have the opportunity now to expand ultrasound from the medical and hospital setting to include assessment capabilities for sports, emergency medical care and for under-served areas of the world.”

Lauren Hammit | EurekAlert!
Further information:
http://www.nsbri.org/NewsPublicOut/Release.epl?r=87
http://www.bcm.edu

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>