Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultrasound – a diagnostic tool for space, sports and more

03.11.2005


An ultrasound training program for non-physicians gives astronauts and sports trainers the tools to assess injuries using real-time remote assistance from medical experts.



Researchers with the National Space Biomedical Research Institute (NSBRI) have developed a computer-based training method that teaches non-physicians to operate ultrasound as if they were technicians. Crew members for four International Space Station (ISS) missions have trained with the program and have performed ultrasound techniques while in space. The ultrasound program also has been used by trainers with the Detroit Red Wings hockey team.

“In isolated places like the ISS, we don’t have the luxury of a radiologist or specialist onboard,” said Dr. Scott A. Dulchavsky, a researcher on NSBRI’s Smart Medical Systems Team. “Our goal is to enable someone working in a remote environment to assess and manage an emergency medical condition.”


In space, ultrasound can be used to assess a number of injuries such as trauma to the eye, shoulder or knee, tooth abscesses, broken or fractured bones, a collapsed lung, hemorrhaging, or muscle and bone atrophy. It normally takes 200 hours plus yearly updates to learn to operate ultrasound, but Dulchavsky and his team developed an education method that cuts the time to two-to-three hours a year.

Dulchavsky also sees this ultrasound training method as beneficial to battlefield medics and emergency responders. Injury severity can be assessed and decisions made whether to treat injuries on site or transport to a hospital.

“With remote guidance, we virtually couple a modestly trained operator with an experienced medical expert, essentially making the non-physician the hands of the expert,” said Dulchavsky, chair of the Department of Surgery at Henry Ford Hospital in Detroit. “There is tremendous potential for space medicine and benefits for Earth.”

The program consists of a computer-based instructional presentation on the basics of ultrasound examination and examples of remote guidance. Remote guidance is presented in experiment-specific sections, comparable to visual case studies. “One video session walks you through basic positioning, and the next one might demonstrate how to image a bone,” Dulchavsky said.

After the computer-based instruction, trainees participate in a hands-on session where they perform abdominal and musculoskeletal ultrasound scans. A video stream from the ultrasound device is split between the on-site monitor and the remote location. Watching the simultaneous video feed, the remote medical expert can see the trainee’s ultrasound images. He or she uses voice commands to guide the operator into positioning the probe and fine-tuning the settings to produce clear, useful images. The hands-on sessions are designed to closely simulate ultrasound experiments performed in orbit.

After the initial training, ultrasound operators complete a one-hour refresher course developed by Dulchavsky’s team, called the Onboard Proficiency Enhancement (OPE) program. The OPE employs multi-media instruction similar to the original computer-based training. ISS Expedition 9 crewmembers astronaut Michael Fincke and cosmonaut Gennady Padalka completed the OPE program before doing inflight ultrasound scans of the shoulder. Dulchavsky says the program will soon be one of the medical tools used by the Detroit Tigers baseball club. In addition, the U.S. Olympic Committee recently announced a collaboration with Dulchavsky’s group to create research protocols involving Olympic athletes.

“Our next challenge is to improve the speed and efficiency of diagnosing and treating injury,” Dulchavsky said. “We have the opportunity now to expand ultrasound from the medical and hospital setting to include assessment capabilities for sports, emergency medical care and for under-served areas of the world.”

Lauren Hammit | EurekAlert!
Further information:
http://www.nsbri.org/NewsPublicOut/Release.epl?r=87
http://www.bcm.edu

More articles from Health and Medicine:

nachricht Using fragment-based approaches to discover new antibiotics
21.06.2018 | SLAS (Society for Laboratory Automation and Screening)

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>