Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experiencing the world through the neurons of Math1

06.10.2005


Close your eyes and imagine you are in a darkened Carnegie Hall. Although it’s pitch black, you know you are getting closer to the stage as the music gets louder. If you have been there before, you have a sense of the location of the seats and aisles. You remain upright because you somehow know where your legs, arms and feet are. Your head remains upright.



A variety of neurons or nerve cells makes it possible for you to approach the stage and even find a seat without sight. Several of those neurons migrate from an embryonic structure called the rhombic lip, and many of these in the auditory, vestibular and proprioreceptive (sense of position in space) systems come into being because of a single gene called Math1, said researchers from Baylor College of Medicine in a report in the current issue of the journal Neuron.

"These three systems all seem to have a similar function. They all help us coordinate body perception and movement in space. Now we know that one gene specifies the majority of these neurons – that this one gene has been conserved during evolution to execute this task, said Dr. Huda Zoghbi, BCM professor of pediatrics and molecular and human genetics as well as a Howard Hughes Medical Institute investigator.


Zoghbi led the team that found the Math1 gene a few years ago and at that time, determined that it was important for the formation of hair cells in the inner ear and some neurons in the cerebellum and intestine.

Now, mouse studies carried out by her and two graduate students, Matthew Rose and Vincent Y. Wang, demonstrate that Math1 plays a pivotal role in the formation of many of the neurons important in carrying hearing and vestibular and balance signals after they have been received and transmitted by the inner ear hair cells. The gene also specifies neurons that coordinate balance of body parts.

These nerve cells all arise in the rhombic lip,an embryonic structure not known to produce some of these various neurons previously, said Rose.

"Here is a neuronal network that coordinates many different types of sensations, and Math1 is required for many components of it," said Zoghbi. "It is involved in the formation of many neurons that form key hubs for these senses. This is really very interesting. When one thinks of genes, one thinks of them specifying certain type of cells, but here is a gene that specifies many different types of cells in a network designed to help us keep our balance find our position in space both by being aware of the position of our body parts and by hearing."

In a more prosaic sense, "this is the gene that make the neurons you use when you get up in the night to get a drink of water and manage to do so in the dark" said Rose.

Ross Tomlin | EurekAlert!
Further information:
http://www.bcm.tmc.edu

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>