Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experiencing the world through the neurons of Math1

06.10.2005


Close your eyes and imagine you are in a darkened Carnegie Hall. Although it’s pitch black, you know you are getting closer to the stage as the music gets louder. If you have been there before, you have a sense of the location of the seats and aisles. You remain upright because you somehow know where your legs, arms and feet are. Your head remains upright.



A variety of neurons or nerve cells makes it possible for you to approach the stage and even find a seat without sight. Several of those neurons migrate from an embryonic structure called the rhombic lip, and many of these in the auditory, vestibular and proprioreceptive (sense of position in space) systems come into being because of a single gene called Math1, said researchers from Baylor College of Medicine in a report in the current issue of the journal Neuron.

"These three systems all seem to have a similar function. They all help us coordinate body perception and movement in space. Now we know that one gene specifies the majority of these neurons – that this one gene has been conserved during evolution to execute this task, said Dr. Huda Zoghbi, BCM professor of pediatrics and molecular and human genetics as well as a Howard Hughes Medical Institute investigator.


Zoghbi led the team that found the Math1 gene a few years ago and at that time, determined that it was important for the formation of hair cells in the inner ear and some neurons in the cerebellum and intestine.

Now, mouse studies carried out by her and two graduate students, Matthew Rose and Vincent Y. Wang, demonstrate that Math1 plays a pivotal role in the formation of many of the neurons important in carrying hearing and vestibular and balance signals after they have been received and transmitted by the inner ear hair cells. The gene also specifies neurons that coordinate balance of body parts.

These nerve cells all arise in the rhombic lip,an embryonic structure not known to produce some of these various neurons previously, said Rose.

"Here is a neuronal network that coordinates many different types of sensations, and Math1 is required for many components of it," said Zoghbi. "It is involved in the formation of many neurons that form key hubs for these senses. This is really very interesting. When one thinks of genes, one thinks of them specifying certain type of cells, but here is a gene that specifies many different types of cells in a network designed to help us keep our balance find our position in space both by being aware of the position of our body parts and by hearing."

In a more prosaic sense, "this is the gene that make the neurons you use when you get up in the night to get a drink of water and manage to do so in the dark" said Rose.

Ross Tomlin | EurekAlert!
Further information:
http://www.bcm.tmc.edu

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>