Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Experiencing the world through the neurons of Math1


Close your eyes and imagine you are in a darkened Carnegie Hall. Although it’s pitch black, you know you are getting closer to the stage as the music gets louder. If you have been there before, you have a sense of the location of the seats and aisles. You remain upright because you somehow know where your legs, arms and feet are. Your head remains upright.

A variety of neurons or nerve cells makes it possible for you to approach the stage and even find a seat without sight. Several of those neurons migrate from an embryonic structure called the rhombic lip, and many of these in the auditory, vestibular and proprioreceptive (sense of position in space) systems come into being because of a single gene called Math1, said researchers from Baylor College of Medicine in a report in the current issue of the journal Neuron.

"These three systems all seem to have a similar function. They all help us coordinate body perception and movement in space. Now we know that one gene specifies the majority of these neurons – that this one gene has been conserved during evolution to execute this task, said Dr. Huda Zoghbi, BCM professor of pediatrics and molecular and human genetics as well as a Howard Hughes Medical Institute investigator.

Zoghbi led the team that found the Math1 gene a few years ago and at that time, determined that it was important for the formation of hair cells in the inner ear and some neurons in the cerebellum and intestine.

Now, mouse studies carried out by her and two graduate students, Matthew Rose and Vincent Y. Wang, demonstrate that Math1 plays a pivotal role in the formation of many of the neurons important in carrying hearing and vestibular and balance signals after they have been received and transmitted by the inner ear hair cells. The gene also specifies neurons that coordinate balance of body parts.

These nerve cells all arise in the rhombic lip,an embryonic structure not known to produce some of these various neurons previously, said Rose.

"Here is a neuronal network that coordinates many different types of sensations, and Math1 is required for many components of it," said Zoghbi. "It is involved in the formation of many neurons that form key hubs for these senses. This is really very interesting. When one thinks of genes, one thinks of them specifying certain type of cells, but here is a gene that specifies many different types of cells in a network designed to help us keep our balance find our position in space both by being aware of the position of our body parts and by hearing."

In a more prosaic sense, "this is the gene that make the neurons you use when you get up in the night to get a drink of water and manage to do so in the dark" said Rose.

Ross Tomlin | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>