Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mood Lighting: Penn Researchers Determine Role of Serotonin in Modulating Circadian Rhythm

11.07.2005


Researchers at the University of Pennsylvania School of Medicine have determined how serotonin decreases the body’s sensitivity to light and that exposure to constant darkness leads to a decrease in serotonin levels in the brain of fruit flies. These findings suggest that serotonin may play a role in maintaining circadian rhythm, as well as modulating light-related disorders such as seasonal affective disorder (SAD). Senior author Amita Sehgal, PhD, Professor of Neuroscience at Penn and a Howard Hughes Medical Institute (HHMI) Investigator, and colleagues report their findings in the July 7 issue of Neuron.



The body’s 24-hour (circadian) clock controls cycles of wakefulness and sleep, as well as the rhythm of other physiological functions, such as body temperature and blood pressure. Although the body functions on roughly a 24-hour schedule, this cycle is capable of being reset by environmental disturbances. In Sehgal’s lab, fruit flies provide the model system for examining entrainment, the synchronization of the internal clock to the environment.

“In humans, a light pulse in the early evening delays rhythm-if it stays light later, you stay up later,” says Sehgal. “Disturbances in the late evening advance the body clock-an early dawn leads to an early rise.”


Entrainment was tested in flies by exposing them to a pulse of light during the dark period. Closely resembling the body clock adjustment seen in humans, Sehgal’s flies reset their body clock following the “night-time” disturbances. However, this adjustment was lessened when the flies were treated with serotonin prior to the test.

Sehgal speculates that serotonin is acting to protect the body clock from being over-responsive to light disturbances. “You do not want your clock to be so supersensitive to light that small fluctuations are going to throw it out of whack,” she explains. “Serotonin appears to modulate the response of the body clock to light.”

In flies, a protein called cryptochrome drives the response of the body clock to light. Under normal circumstances, light excites cryptochrome located within the brain, which in turn, interacts directly with the clock protein to reset the clock. Sehgal and colleagues discovered that serotonin works by attaching to the serotonin 1B receptor, altering the activity of another protein, GSK3bß, which further changes the cascade of events leading to the resetting of the clock.

Sehgal points to the clinical implications for understanding the interaction between GSK3ß and serotonin. Lithium, a drug commonly prescribed to treat bipolar disorder, targets GSK3ß. “Lithium resets the clock in all organisms that have been examined,” explains Sehgal. “Assuming that the mechanism works the same way for mammals, the implication would be that antidepressants other than Lithium can also affect the clock.”

Sehgal and colleagues also studied the role of serotonin in dark adaptation, the experience of increased sensitivity to light following long periods of darkness. After seven days in constant darkness, flies demonstrated significantly reduced levels of serotonin compared to flies exposed to the normal light-dark cycle. Interpreting the relationship of serotonin as it influences circadian rhythm, Sehgal suggests, “In situations of dark adaptation, you may become more sensitive to light because serotonin goes down.”

The reduction of serotonin levels in flies kept in constant darkness may provide scientists with insight into the etiology and treatment of SAD, a mood disorder related to reduced sunlight during winter. “People with seasonal affective disorder will respond to medications such as Prozac to increase serotonin,” says Sehgal. “Patients also respond to light therapy. We now believe that light is also increasing serotonin-perhaps this is why both of these treatments are effective.”

By identifying the mechanism of interaction between serotonin and the body clock, as well as the environmental factors influencing the levels of serotonin in the brain, Sehgal and colleagues hope to be able to shed light on the possible role of circadian activity on affective disorders. The interplay of serotonin, light, and the circadian system suggests a close relationship between circadian regulation and mental health.

Sehgal’s co-authors are Quan Yuan, Fangju Lin, and Xiang Zhong Zheng, all from Penn and HHMI. The research was funded by the Howard Hughes Medical Institute.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>