Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Building better therapeutic vaccines for chronic infections


Study finds that poor T cell responsiveness limits current approaches

In recent years, researchers have become increasingly interested in developing therapeutic vaccines. Most Americans are familiar with prophylactic, or preventive vaccines, which protect an individual from infections; examples include the common pediatric vaccines as well as the flu shot. But therapeutic vaccines are designed instead to be administered to patients who have already acquired chronic infections, such as HIV or hepatitis. These therapeutic vaccines aim to enhance the immune system’s ability to combat an infectious agent, such as a virus. Researchers are also developing therapeutic vaccines to treat a variety of cancers.

But many experimental therapeutic vaccines have thus far fallen short of expectations. Now, scientists at The Wistar Institute and Emory University offer details about what may prevent the immune system from responding effectively to a therapeutic vaccine during a state of chronic infection. Their findings suggest how scientists might alter therapeutic vaccination approaches to make the immune system respond better. Their work is published today in the Journal of Virology.

"In this study, we wanted to look at why therapeutic vaccines are generally less effective than prophylactic vaccines," says E. John Wherry, Ph.D., assistant professor in Wistar’s Immunology Program and lead author of the study. Wherry conducted the research as a postdoctoral fellow in the Emory University laboratory of Rafi Ahmed, Ph.D., before joining Wistar earlier this year. "What we found was that the T cells in the chronically infected mice responded poorly to the vaccine."

Specifically, Wherry says, the T cells failed to proliferate, or expand in number. This failure to proliferate seemed to correlate with a high viral load, which suggests several directions researchers might pursue in improving response to therapeutic vaccines.

"The ongoing stimulus to the immune system that occurs in chronic infection seems to prevent the immune cells from responding optimally to a therapeutic vaccine," Wherry says. "If we could lower viral load before therapeutic vaccination, we might be able to improve efficacy."

The next step for the research, Wherry says, will be to combine therapeutic vaccines with other modalities that either lower viral load or enhance T cell function, particularly the proliferative capacity of T cells. Possible examples include anti-virals that could be given prior to therapeutic vaccination, or a cytokine that might boost the proliferation or survival of responding cells.

Wherry’s group at Wistar is continuing to work on understanding at a fundamental level why the T cell proliferation is poor when a therapeutic vaccine is administered during a state of chronic infection. He is also planning to compare the immune response using different therapeutic vaccine platforms. While Wherry’s primary interest is in chronic infection, he notes that research in this area should inform the design of better therapeutic cancer vaccines as well because many of the deficiencies in immune response are similar whether the antigen confronting the immune system is a virus or a tumor.

In addition to Wherry and senior author Ahmed, the other co-author of the paper is Joseph N. Blattman, Ph.D., of Fred Hutchinson Cancer Research Center. Funding for the work was provided by the National Institutes of Health and the Cancer Research Institute.

Franklin Hoke | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>