Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A vaccine approach to treating Parkinson’s disease

16.06.2005


Researchers at the University of California, San Diego (UCSD) School of Medicine working with scientists at Elan Pharmaceuticals, have reported promising results in mice of a vaccine approach to treating Parkinson’s and similar diseases. These results appear in the June edition of the journal Neuron.



Eliezer Masliah, M.D., Professor of Neurosciences and Pathology at UCSD, and colleagues at UCSD and Elan Pharmaceuticals in San Francisco, vaccinated mice using a a combination of the protein that abnormally accumulates in the brains of Parkinson’s (called human alpha-synuclein) and an adjuvant. This approach resulted in the generation of anti-alpha synuclein antibodies in mice that are specially bred by Masliah’s team to simulate Parkinson’s disease, resulting in reduced build-up of abnormal alpha-synuclein. The accumulation of abnormal alpha-synuclein is associated with degeneration of nerve cells and interference with normal inter-cellular communication, leading to Parkinson’s disease and dementia.

The work marks the first time a vaccine for this family of diseases has been found effective in animal studies. Scientists at Elan Pharmaceuticals have been working for the past few years in a vaccine for Alzheimer’s Disease.


The researchers focused on a spectrum of neurological disorders called Lewy body disease, which include Parkinson’s and Alzheimer’s. These disorders are marked by the presence of Lewy bodies -- abnormal clumps of alpha-synuclein -- in the brain. Normally, alpha-synuclein proteins support communications between brain cells, or neurons. However, when abnormal proteins clump together in the neurons, a build-up of synuclein can cut off neuron activity, blocking normal signaling between brain cells and ultimately choking the cells to death.

"We found that the antibodies produced by the vaccinated mice recognized and reduced only the abnormal form of alpha-synuclein, since the protein’s normal form is in a cellular compartment where antibodies can’t reach it," said Masliah. "Abnormal alpha-synuclein finds its way to the cell membrane, where antibodies can recognize it."

Masliah stressed that the team’s experimental active immunization, while effective in mice, may not be as useful in humans. "We would not want to actively immunize humans in this way by triggering antibody development, because one could create harmful inflammation," he cautioned. "However, it might be feasible to inject antibodies directly, as if the patient were creating his or her own."

The team, the first to identify the presence of these proteins in the human brain, originally thought the protein played an important role in the development of Alzheimer’s disease. Then, an explosion of research linked Lewy bodies and their constituent proteins to both Alzheimer’s and Parkinson’s. The team spent four years clarifying alpha-synuclein’s role in Parkinson’s, developing a mouse model that contained the faulty and normal genes for alpha-synuclein, and conducting the experiments that led to their current findings.

With evidence that this approach could be effective in treating Lewy Body disease, the UCSD researchers are now working with Elan Pharmaceuticals to develop alternative ways to produce alpha-synuclein antibodies, with the goal of making a vaccine that is safe and effective in humans. While this research could take many years and holds no promise of prevention or cure, the researchers are hopeful that the mouse studies are a step in the right direction.

"This shows the first demonstration of a vaccine for this family of disease," Masliah said.

Leslie Franz | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht 'Icebreaker' protein opens genome for t cell development, Penn researchers find
21.02.2018 | University of Pennsylvania School of Medicine

nachricht Similarities found in cancer initiation in kidney, liver, stomach, pancreas
21.02.2018 | Washington University School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>