Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duke engineers develop new 3-D cardiac imaging probe

31.05.2005


Biomedical engineers at Duke University’s Pratt School of Engineering have created a new three-dimensional ultrasound cardiac imaging probe. Inserted inside the esophagus, the probe creates a picture of the whole heart in the time it takes for current ultrasound technology to image a single heart cross section.



The new probe has considerable potential not only for evaluating the condition of the heart, but also for use in guiding therapeutic treatment devices, the researchers said. The new Duke probe can also be used to image the esophagus, rectum, colon and prostate.

A peer-reviewed report on the work was published this month in volume 26 issue number 4 of the journal Ultrasonic Imaging. (Note: Because the journal’s publication is backlogged, the issue date is 2004.)


The research is funded by the Heart, Lung and Blood Institute at the National Institutes of Health and by the National Science Foundation.

One form of ultrasound cardiac imaging, called transesophageal echocardiography (TEE), is conducted on hundreds of people each day in the United States. The technique entails inserting a probe down the patient’s throat and behind the heart to capture ultrasound heart images. The images can reveal the condition of the heart chambers, valves, major blood vessels and heart tissue. TEE is a safe and fast diagnostic technique.

However, current TEE systems can quickly generate only two-dimensional cross-sectional images. This limitation makes it impractical for use in guiding therapeutic treatment devices such as ablation probes that burn off damaged cells that cause an irregular heart beat. Clinicians must repeatedly and painstakingly reposition the 2-D probe during treatments so, instead, they use fluoroscopy (X-ray movies) to guide the placement of the treatment devices. However, the use of X-ray imaging results in radiation exposure for patients and requires bulky lead-shielding garments for clinicians. In addition, such procedures take up to seven hours to complete.

Biomedical engineering professor Stephen Smith, who specializes in ultrasound imaging, said a move to three-dimensional imaging is the next logical step.

"Three-D ultrasound is already an established technology in many hospitals," Smith said. "With our new real-time 3-D transesophageal probe, we have all the benefits of the 2-D TEE probe and none of the drawbacks. We can generate sharp, high-contrast images of the whole heart and position heart catheters and ablation devices at the same time. We have already done so in laboratory tests on animals."

Smith and his team, including biomedical engineering graduate student Chris Pua, developed the probe specifically for use in hospitals and clinics. For example, they used the outer casing of a commercially available 2-D TEE probe to house their new 3-D model. The casing design already has been tested and approved for use.

The new Duke 3-D probe is tipped with a dime-sized array of 504 individual ultrasound sensors. Each sensor is as wide as a few human hairs. "It took a craftsman to create this probe," said Smith. "Not many graduate students could have done what Chris Pua has done."

"Maintaining the size of normal TE probes was a main factor in the design since 3-D imaging inherently requires significantly more sensors than 2-D imaging," said Pua. "The original casing held enough cabling for 64 transducer elements whereas our design successfully incorporates 8 times that number."

The probe generates ultrasound at 5 million vibrations per second, which, combined with the 504 sensors, provides great sensitivity and a sharp image, Smith said. And because the image is large enough to encompass the whole volume of the heart, fewer "pictures" need to be taken. This may shorten patient time in clinics, he said.

Deborah Hill | EurekAlert!
Further information:
http://www.duke.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>