Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duke engineers develop new 3-D cardiac imaging probe

31.05.2005


Biomedical engineers at Duke University’s Pratt School of Engineering have created a new three-dimensional ultrasound cardiac imaging probe. Inserted inside the esophagus, the probe creates a picture of the whole heart in the time it takes for current ultrasound technology to image a single heart cross section.



The new probe has considerable potential not only for evaluating the condition of the heart, but also for use in guiding therapeutic treatment devices, the researchers said. The new Duke probe can also be used to image the esophagus, rectum, colon and prostate.

A peer-reviewed report on the work was published this month in volume 26 issue number 4 of the journal Ultrasonic Imaging. (Note: Because the journal’s publication is backlogged, the issue date is 2004.)


The research is funded by the Heart, Lung and Blood Institute at the National Institutes of Health and by the National Science Foundation.

One form of ultrasound cardiac imaging, called transesophageal echocardiography (TEE), is conducted on hundreds of people each day in the United States. The technique entails inserting a probe down the patient’s throat and behind the heart to capture ultrasound heart images. The images can reveal the condition of the heart chambers, valves, major blood vessels and heart tissue. TEE is a safe and fast diagnostic technique.

However, current TEE systems can quickly generate only two-dimensional cross-sectional images. This limitation makes it impractical for use in guiding therapeutic treatment devices such as ablation probes that burn off damaged cells that cause an irregular heart beat. Clinicians must repeatedly and painstakingly reposition the 2-D probe during treatments so, instead, they use fluoroscopy (X-ray movies) to guide the placement of the treatment devices. However, the use of X-ray imaging results in radiation exposure for patients and requires bulky lead-shielding garments for clinicians. In addition, such procedures take up to seven hours to complete.

Biomedical engineering professor Stephen Smith, who specializes in ultrasound imaging, said a move to three-dimensional imaging is the next logical step.

"Three-D ultrasound is already an established technology in many hospitals," Smith said. "With our new real-time 3-D transesophageal probe, we have all the benefits of the 2-D TEE probe and none of the drawbacks. We can generate sharp, high-contrast images of the whole heart and position heart catheters and ablation devices at the same time. We have already done so in laboratory tests on animals."

Smith and his team, including biomedical engineering graduate student Chris Pua, developed the probe specifically for use in hospitals and clinics. For example, they used the outer casing of a commercially available 2-D TEE probe to house their new 3-D model. The casing design already has been tested and approved for use.

The new Duke 3-D probe is tipped with a dime-sized array of 504 individual ultrasound sensors. Each sensor is as wide as a few human hairs. "It took a craftsman to create this probe," said Smith. "Not many graduate students could have done what Chris Pua has done."

"Maintaining the size of normal TE probes was a main factor in the design since 3-D imaging inherently requires significantly more sensors than 2-D imaging," said Pua. "The original casing held enough cabling for 64 transducer elements whereas our design successfully incorporates 8 times that number."

The probe generates ultrasound at 5 million vibrations per second, which, combined with the 504 sensors, provides great sensitivity and a sharp image, Smith said. And because the image is large enough to encompass the whole volume of the heart, fewer "pictures" need to be taken. This may shorten patient time in clinics, he said.

Deborah Hill | EurekAlert!
Further information:
http://www.duke.edu

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>