Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discoveries by UAB and Florida scientists may help transplanted organs survive longer

03.05.2005


Scientists may have found a way to dramatically slow organ transplant rejection by as much as several years.



That’s the promising implication of an animal study carried out by researchers at the University of Alabama at Birmingham (UAB) and the University of Florida (UF) published in today’s (May 2) issue of Proceedings of the National Academy of Sciences.

The research team reported that they have identified the biological pathway of a potent molecule that could delay rejection of transplanted organs by preventing blood-vessel deterioration.


"One of the principal problems for kidney transplantation is organ availability," said Mark A. Atkinson, Ph.D., a study co-author and director of the Center for Immunology and Transplantation Research at UF. "That occurs in part because after several years, people with kidney transplants often lose function of the organ. With about 60,000 people on the waiting list for a transplant, it would help immensely to find a way to reduce a patient’s need for a second or third kidney."

The helpful molecule, IL-10, has anti-inflammatory, immunosuppressive and other properties that help keep blood vessels healthy. Chronic vascular rejection, characterized by thickening of the interior lining that eventually chokes off the blood supply, is a major cause of the loss of function in solid organ transplants.

The study, carried out in rat models, also showed that a single muscular injection of the molecule, interleukin-10 (IL-10), carried in a gene delivery vector, or mechanism, could provide long-term therapeutic effects.

Anupam Agarwal, M.D., director of the UAB Nephrology Research and Training Center and senior author of the report, said the group found that IL-10 was active through the heme oxygenase-dependent (HO-1) biological pathway between cells.

"We found that one dose of IL-10 delivered using a viral vector delays the vascular disease from occurring," Agarwal said. "If the HO-1 pathway is blocked, the protective effects of IL-10 are lost. The delay in vascular disease shown in this study could – after more research and possible clinical trials in human beings – offer the benefit of at least several additional years of health for transplanted organs."

A key to the single-injection strategy, Atkinson said, "was the use of adeno-associated virus as a way to deliver IL-10 into the body, allowing sustained levels of the molecule to be persistently secreted into the blood stream.

The next step will be to evaluate the treatment to try to protect kidney transplants in non-human primates – and if successful there, go on to clinical trials in humans, said Agarwal.

Hank Black | EurekAlert!
Further information:
http://www.uab.edu
http://www.vpha.health.ufl.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>