Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fusing physics with medicine to fight cancer

28.04.2005


Everyone’s lives are touched by cancer – it is a disease that affects 1 in 3 of us throughout our lifetime. Future developments that lead to earlier diagnosis and more effective therapy lie in further successful collaboration between high energy physicists and the healthcare industry.



This was the key message to come from an event today (28th April) which brought together 130 leading healthcare professionals and physicists. Speaking at “The Future of Medical Imaging and Radiotherapy” at the Institute of Physics in London, keynote speaker, Professor Alan Horwich, Director of Clinical Research and Development at the Institute of Cancer Research, Royal Marsden Hospital stated,

"I don’t think there is any discipline that has gained so much from technology developed for applied physics as cancer diagnosis and therapy. There is considerable potential for improving cancer cure rates over the next 10-15 years by the application of emerging imaging technologies to radiotherapy.”


The event, organised by the Particle Physics and Astronomy Research Council (PPARC), showcased a number of technologies originally developed for particle physics experiments that have been successfully applied to the medical industry – particularly in relation to the diagnosis and treatment of cancer. These technologies include Positron Emission Tomography (PET), Magnetic Resonance Imaging (MRI), Computed X-Ray Tomography (CT) molecular imaging.

Nathan Hill, PPARC’s Industry Coordinator and UK Technology Transfer Coordinator for CERN said, “Technology transfer from particle physics to the healthcare industry has already happened. By holding events such as this we are trying to stimulate the development of the next generation of technologies that will lead to earlier diagnosis and more effective therapy.”

He adds, “Several of the industrial/academic collaborations to date have resulted in the development of successful spin out companies – bringing the physics technology to the medical market place. There is no better demonstration of how particle physics impacts on the lives of ordinary people than when the technologies employed result in improved diagnostic treatments for patients.”

PPARC has been instrumental in setting up collaborations between its scientists and industrialists. Fourteen of its collaborative projects are in the field of healthcare. Examples of those featured at today’s event include:-

- a camera for medical imaging developed by the Rutherford Appleton Laboratory, Institute of Cancer Research and the Royal Marsden Hospital. The novel positron camera (PETTRA) is based on a gas filled ionisation chamber as developed for particle physics at CERN by nobel prize winner, George Charpak.

- a sensitive camera for monitoring cancer treatment based on technology from X-Ray astronomy developed by a collaboration between scientists at the university of Leicester and the Queen’s Medical Centre, University of Birmingham.

- the development of a compact imager for the detection of breast cancer by a team from scientists from different departments at University College, London. This project is based on technologies used in detecting high energy particles (e.g. Opal experiment at the LEP detector, CERN and the Minos experiment).

One example of a successful healthcare spinout company resulting from an industrial/academic collaboration is Mirada Solutions. The origins of the company lie in a spin out from the University of Oxford, which was initially funded by Oxford University and private “angel” investment from Lady and Sir Martin Wood, with subsequent VC investment.

Mirada Solutions produces clinical software for Positron Emission Tomography (PET) and molecular imaging for clinical and pharmaceutical R&D use. Mirada’s products focus on the early detection of neurological diseases and cancer, and in the development of new applications in pharmaceutical research, disease monitoring and therapy. Mirada is now part of the CTI Molecular Imaging group of companies (NASDAQ: CTMI) following acquisition in late 2003.

Dr Chris Behrenbruch, President of CTI Mirada Solutions said, “the UK is becoming an increasingly rich environment for academic-industry collaboration and the creation of new, highly innovative healthcare businesses. Creating a climate for innovation not only requires access to the best minds and clinical practitioners, but a mutual understanding of the intellectual property, regulatory and commercialisation issues associated with commercialising university and institutional R&D”.

He adds, “Medicine is no longer just about doctors. It is about partnerships between engineers, physicists, biologists and chemists – all with a strong desire to collaborate.”

Gill Ormrod | alfa
Further information:
http://www.pparc.ac.uk

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>