Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fusing physics with medicine to fight cancer

28.04.2005


Everyone’s lives are touched by cancer – it is a disease that affects 1 in 3 of us throughout our lifetime. Future developments that lead to earlier diagnosis and more effective therapy lie in further successful collaboration between high energy physicists and the healthcare industry.



This was the key message to come from an event today (28th April) which brought together 130 leading healthcare professionals and physicists. Speaking at “The Future of Medical Imaging and Radiotherapy” at the Institute of Physics in London, keynote speaker, Professor Alan Horwich, Director of Clinical Research and Development at the Institute of Cancer Research, Royal Marsden Hospital stated,

"I don’t think there is any discipline that has gained so much from technology developed for applied physics as cancer diagnosis and therapy. There is considerable potential for improving cancer cure rates over the next 10-15 years by the application of emerging imaging technologies to radiotherapy.”


The event, organised by the Particle Physics and Astronomy Research Council (PPARC), showcased a number of technologies originally developed for particle physics experiments that have been successfully applied to the medical industry – particularly in relation to the diagnosis and treatment of cancer. These technologies include Positron Emission Tomography (PET), Magnetic Resonance Imaging (MRI), Computed X-Ray Tomography (CT) molecular imaging.

Nathan Hill, PPARC’s Industry Coordinator and UK Technology Transfer Coordinator for CERN said, “Technology transfer from particle physics to the healthcare industry has already happened. By holding events such as this we are trying to stimulate the development of the next generation of technologies that will lead to earlier diagnosis and more effective therapy.”

He adds, “Several of the industrial/academic collaborations to date have resulted in the development of successful spin out companies – bringing the physics technology to the medical market place. There is no better demonstration of how particle physics impacts on the lives of ordinary people than when the technologies employed result in improved diagnostic treatments for patients.”

PPARC has been instrumental in setting up collaborations between its scientists and industrialists. Fourteen of its collaborative projects are in the field of healthcare. Examples of those featured at today’s event include:-

- a camera for medical imaging developed by the Rutherford Appleton Laboratory, Institute of Cancer Research and the Royal Marsden Hospital. The novel positron camera (PETTRA) is based on a gas filled ionisation chamber as developed for particle physics at CERN by nobel prize winner, George Charpak.

- a sensitive camera for monitoring cancer treatment based on technology from X-Ray astronomy developed by a collaboration between scientists at the university of Leicester and the Queen’s Medical Centre, University of Birmingham.

- the development of a compact imager for the detection of breast cancer by a team from scientists from different departments at University College, London. This project is based on technologies used in detecting high energy particles (e.g. Opal experiment at the LEP detector, CERN and the Minos experiment).

One example of a successful healthcare spinout company resulting from an industrial/academic collaboration is Mirada Solutions. The origins of the company lie in a spin out from the University of Oxford, which was initially funded by Oxford University and private “angel” investment from Lady and Sir Martin Wood, with subsequent VC investment.

Mirada Solutions produces clinical software for Positron Emission Tomography (PET) and molecular imaging for clinical and pharmaceutical R&D use. Mirada’s products focus on the early detection of neurological diseases and cancer, and in the development of new applications in pharmaceutical research, disease monitoring and therapy. Mirada is now part of the CTI Molecular Imaging group of companies (NASDAQ: CTMI) following acquisition in late 2003.

Dr Chris Behrenbruch, President of CTI Mirada Solutions said, “the UK is becoming an increasingly rich environment for academic-industry collaboration and the creation of new, highly innovative healthcare businesses. Creating a climate for innovation not only requires access to the best minds and clinical practitioners, but a mutual understanding of the intellectual property, regulatory and commercialisation issues associated with commercialising university and institutional R&D”.

He adds, “Medicine is no longer just about doctors. It is about partnerships between engineers, physicists, biologists and chemists – all with a strong desire to collaborate.”

Gill Ormrod | alfa
Further information:
http://www.pparc.ac.uk

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>