Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Probe, Not an Echo

06.04.2005


Non-Invasive and Safe, a New USC System Images and Differentiates Soft Tissue With Unprecedented Detail and Precision
Researchers at the University of Southern California’s Viterbi School of Engineering have successfully demonstrated a novel “High-resolution Ultrasonic Transmission Tomography” (HUTT) system fthat offers 3D images of soft tissue that are superior to those produced by existing commercial X-ray, ultrasound or MRI units.

Vasilis Marmarelis, a professor of biomedical engineering at the Viterbi School, presented HUTT images of animal organ tissue in San Diego at the 28th International Acoustical Imaging Symposium on March 21st.


According to Marmarelis, HUTT offers nearly order-of-magnitude improvement in resolution of structures in soft tissue (i.e., 0.4 mm, compared to 2 mm for the best alternatives). Several other features promise to make the technology a scientific and clinical tool of great power:

Robust algorithmic tools enable HUTT to differentiate separate types of tissue based on their distinctive “frequency-dependent attenuation” profiles, that should allow clinicians to distinguish malignant lesions from benign growths in a non-invasive and highly reliable manner. In addition to improved resolution, the system can locate tissue features with extreme precision in a objective, fixed-coordinate 3D grid, crucial for guiding surgical procedures.

Scans can be performed in a matter of a few minutes and because they are ultrasonic, they do not use potentially harmful ionizing radiation. The system requires a minimum of special pre-scan procedures and appears likely, in clinical use, to be more comfortable for patients than alternatives. "The HUTT imaging system is a novel and potentially very useful approach to diagnostic ultrasound,” said Dr. Phillip W. Ralls, a professor and vice chair in the USC Keck School of Medicine department of radiology. “The potential clinical benefits of the superb images obtained by this completely safe, non-invasive technique are very exciting."

According to Marmarelis, the key features distinguishing HUTT from all previous ultrasound imaging systems is the use of multi-band analysis with sub-millimeter ultrasonic transducers in transmission mode, rather than the commonly used echo mode, to create the 3-D image. He explains that in traditional hand-held ultrasound systems, sound waves are broadcast into the tissue, and the echoes produce an image of the reflecting interfaces – that is, the sound transmitter and the receiver are both on the same side of the sample.

However, only a tiny fraction of the transmitted sound comes back as echo on soft tissues, while a much larger fraction (about 2000 times bigger) is transmitted through the soft tissue. Using the sound transmitted through tissue allows the formation of better images with greater clarity and resolution. A hand-held apparatus cannot objectively locate objects in 3D space (in a fixed-coordinate system), but only allows the user to subjectively observe where an object is in relation to other observable structures. Therefore, it is operator-dependent.

The HUTT system transmits an extremely short ultrasonic pulse (about 250 nanosecond) of 4-12 megahertz frequency (far above human hearing) and picks up the pulse on the other side after it has traveled through the imaged object. The transmitted pulses come from an array of very small ultrasonic transducers of sub-millimeter dimensions. A parallel array of transducers on the other side receives the pulses after they travel through the imaged tissue.

A sophisticated coding/decoding signal scheme recognizes a small “sweet spot” of the signal coming from the opposite transducer, and only that transducer, and ignores all other pulses transmitted by neighboring transducers. The transducer is able to distinguish the right signal from the right transducer by using coding that is almost identical to that used by a cell phone to detect signals sent to its number -- and its number only -- from the flood of electronic signals on the air at any given time.

When the transducer captures the signal, it is processed with advanced signal processing algorithms, specially developed by Marmarelis’ group, to form the multi-band images. Different kinds of tissue allow slightly more, or slightly less of the pulse through -- the loss is called “attenuation,” and varies according to the type of tissue, and the frequency of the pulse. "Typically the resulting images represent minute variations in relative attenuation over various frequency bands and they define the different sections of the tissue in the image,” said Marmarelis.

The two arrays, transmitter and receiver, are mounted on opposite sides of a drum that spins as it rises around the object (which is suspended in water), creating a stack of tomographic image slices which visualization algorithms turn into 3D images.

In the first set of experiments using the HUTT system, the Marmarelis team easily located a set of small metal balls smaller than a millimeter in diameter embedded in agar medium. Many critical refinements occurred during the five-year process of development, as the team gained proficiency in imaging animal tissue, notably sheep kidneys and bovine liver.

The most critical feature of the HUTT imaging technology is its potential to reliably differentiate types of tissue based on their multi-band signatures caused by their varying attenuation patterns. This promises to allow non-invasive detection of lesions in clinical diagnosis, which represents the “holy grail” of medical imaging.

The team found it possible to identify various anatomical structures within the kidney based on their distinctive attenuation characteristics, so that computerized algorithms could display in color-coded fashion one tissue in red, another in green, and so forth – thus assisting visualization in 3D.

The technology could also be used to isolate one type of tissue , allowing, for example, all the blood vessel structures to be displayed alone and studied.

“Preliminary results on a sheep kidney show exquisite anatomic and tissue detail,” commented radiologist Ralls. Working with Marmarelis on the project are post-doctoral researchers Drs. Dae C. Shin, Jeong-Won Jeong, Changzheng Huang, and Syn-Ho Do.

Marmarelis is co-director of the Biomedical Simulations Resource (BMSR), an NIH-funded center for the advancement research in biomedical modeling; and also holds an appointment in the Viterbi School’s Electrical Engineering Department.

Marmarelis’ work was funded by the Alfred E. Mann Institute for Biomedical Engineering at the University of Southern California.

Eric Mankin | EurekAlert!
Further information:
http://www.usc.edu

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>