Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Empowering patients to lead fully mobile lives

03.03.2005


High risk and chronically ill patients in Europe may soon find themselves able to lead independent and fully mobile lives thanks to the work of a project that has developed a Body Area Network of wireless sensors to remotely monitor vital signs.
Since this IST-funded project MobiHealth ended in February 2004, the project partners have gone on to further develop the mobile healthcare system and expect to have a commercial product on the market by early next year, potentially marking a major advancement in European healthcare with benefits for both patients and doctors.

Patient empowerment


“Patient empowerment is all about ensuring patients can be independent and can go about their daily lives in comfort, it’s about not letting a disease constrain your life, about being able to go to work safe in the knowledge that if there are complications a healthcare professional is watching over you,” explains MobiHealth coordinator Rainer Herzog at Ericsson Enterprise in Germany.

That empowerment of patients was brought a step closer to becoming reality by the MobiHealth project with the creation of a comprehensive monitoring system that is among the most advanced developed to date. “It’s highly advanced in the sense that it provides continuous, automatic data collection and transmission in real-time,” Herzog says. “Other systems generally store the data and then have to synchronise it locally with the databases of healthcare workers.”

At the heart of the MobiHealth system is what the project partners have termed a Body Area Network (BAN) comprised of wearable, non-intrusive sensors to monitor vital signs – everything from heart and breathing rates to oxygen saturation and muscular activity. “The network is very adaptable in that different sensors can be added to monitor different body functions depending on the patient’s illness,” the coordinator notes.

The sensors are connected via Bluetooth wireless technology to a Mobile Base Unit, in essence a programmable mobile phone or PDA, that then transmits the data over GPRS or UMTS to the patient’s doctor or healthcare centre.

MobiHealth on trial

Evaluation testing in 2003 showed the stability and effectiveness of the MobiHealth system as well as the feasibility of it being used in a wide range of medical fields. In trials in The Netherlands, for example, the system was used with trauma patients and pregnant women; in Sweden it was used to keep track of respiration and physical activity; in Germany to monitor cardiac patients; and in Spain it was tested in rehabilitation and homecare scenarios.

“The trials validated the feasibility of the system, not only from a technological and medical viewpoint but also in terms of acceptability,” Herzog says. “Almost everyone involved – patients and doctors – agreed that the system offered significant advantages. Patients particularly liked being monitored, with many saying that it gave them peace of mind and encouraged them to do more activities, while doctors saw that they could improve quality of care while reducing the workload.”

In an extension of the project’s original goals, the partners have also set about creating a “powerful analytical tool” to process the raw data received from the system and present it to healthcare workers in an “easy to use” format.

From the point of view of healthcare providers mobile health techniques will prove essential in the future if Europe’s overburdened national public health systems are to reduce costs while maintaining standards. By providing patients’ with remote monitoring services they do not necessarily need to take up a hospital bed or visit their doctor everyday, but will still receive the same or an even better quality of care.

That is the central premise behind the market areas being studied by the project partners for a commercial application of their system.

Towards commercialisation

“We are currently targeting the system toward four market areas that would be able to make the most out of MobiHealth initially,” Herzog notes. “People with chronic diseases, such as heart disease and asthma; people at risk, such as women with high-risk pregnancies; patients who have been hospitalised for surgery and who can be kept under observation remotely rather than keeping them in for in a hospital bed; and the pharmaceutical industry, where the system could be used to reduce the time and cost of clinical trials for drugs.”

The project coordinator also points to the potential for MobiHealth to be employed to monitor the elderly and disabled, given that the BAN can include a panic alarm and a “drop alarm” which will alert healthcare workers if a patient falls down and remains immobile. “We’ve also included a localisation system based on triangulation between mobile relay antennas to allow emergency services to locate a patient in need,” Herzog notes.

The project partners are due to perform further evaluations of MobiHealth this year in order to gain authorisation for the technology from European health authorities with the aim of having a commercial system available in the first half of 2006.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Health and Medicine:

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>