Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Empowering patients to lead fully mobile lives

03.03.2005


High risk and chronically ill patients in Europe may soon find themselves able to lead independent and fully mobile lives thanks to the work of a project that has developed a Body Area Network of wireless sensors to remotely monitor vital signs.
Since this IST-funded project MobiHealth ended in February 2004, the project partners have gone on to further develop the mobile healthcare system and expect to have a commercial product on the market by early next year, potentially marking a major advancement in European healthcare with benefits for both patients and doctors.

Patient empowerment


“Patient empowerment is all about ensuring patients can be independent and can go about their daily lives in comfort, it’s about not letting a disease constrain your life, about being able to go to work safe in the knowledge that if there are complications a healthcare professional is watching over you,” explains MobiHealth coordinator Rainer Herzog at Ericsson Enterprise in Germany.

That empowerment of patients was brought a step closer to becoming reality by the MobiHealth project with the creation of a comprehensive monitoring system that is among the most advanced developed to date. “It’s highly advanced in the sense that it provides continuous, automatic data collection and transmission in real-time,” Herzog says. “Other systems generally store the data and then have to synchronise it locally with the databases of healthcare workers.”

At the heart of the MobiHealth system is what the project partners have termed a Body Area Network (BAN) comprised of wearable, non-intrusive sensors to monitor vital signs – everything from heart and breathing rates to oxygen saturation and muscular activity. “The network is very adaptable in that different sensors can be added to monitor different body functions depending on the patient’s illness,” the coordinator notes.

The sensors are connected via Bluetooth wireless technology to a Mobile Base Unit, in essence a programmable mobile phone or PDA, that then transmits the data over GPRS or UMTS to the patient’s doctor or healthcare centre.

MobiHealth on trial

Evaluation testing in 2003 showed the stability and effectiveness of the MobiHealth system as well as the feasibility of it being used in a wide range of medical fields. In trials in The Netherlands, for example, the system was used with trauma patients and pregnant women; in Sweden it was used to keep track of respiration and physical activity; in Germany to monitor cardiac patients; and in Spain it was tested in rehabilitation and homecare scenarios.

“The trials validated the feasibility of the system, not only from a technological and medical viewpoint but also in terms of acceptability,” Herzog says. “Almost everyone involved – patients and doctors – agreed that the system offered significant advantages. Patients particularly liked being monitored, with many saying that it gave them peace of mind and encouraged them to do more activities, while doctors saw that they could improve quality of care while reducing the workload.”

In an extension of the project’s original goals, the partners have also set about creating a “powerful analytical tool” to process the raw data received from the system and present it to healthcare workers in an “easy to use” format.

From the point of view of healthcare providers mobile health techniques will prove essential in the future if Europe’s overburdened national public health systems are to reduce costs while maintaining standards. By providing patients’ with remote monitoring services they do not necessarily need to take up a hospital bed or visit their doctor everyday, but will still receive the same or an even better quality of care.

That is the central premise behind the market areas being studied by the project partners for a commercial application of their system.

Towards commercialisation

“We are currently targeting the system toward four market areas that would be able to make the most out of MobiHealth initially,” Herzog notes. “People with chronic diseases, such as heart disease and asthma; people at risk, such as women with high-risk pregnancies; patients who have been hospitalised for surgery and who can be kept under observation remotely rather than keeping them in for in a hospital bed; and the pharmaceutical industry, where the system could be used to reduce the time and cost of clinical trials for drugs.”

The project coordinator also points to the potential for MobiHealth to be employed to monitor the elderly and disabled, given that the BAN can include a panic alarm and a “drop alarm” which will alert healthcare workers if a patient falls down and remains immobile. “We’ve also included a localisation system based on triangulation between mobile relay antennas to allow emergency services to locate a patient in need,” Herzog notes.

The project partners are due to perform further evaluations of MobiHealth this year in order to gain authorisation for the technology from European health authorities with the aim of having a commercial system available in the first half of 2006.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Health and Medicine:

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>