Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New clues to amyloidoses ?

21.02.2005


Familial amyloid polyneuropathy (FAP), a hereditary disease characterised by abnormal deposits of insoluble protein in the organs, results from a mutation in a single gene (the transthyretin or TTR gene). Nevertheless, disease incidence and age of onset can vary significantly between patients what have always puzzled scientists. Now, in the latest issue of the journal Human Molecular Genetics, a team of researchers propose for the first time that other genes might be involved in the clinical signs of FAP what would exxplain why patients with a single TTR mutation can, nevertheless, have such different disease.

Amyloidoses are diseases where normally soluble proteins form insoluble deposits (amyloids) causing organ damage and many times patient death. Examples include Alzheimer’s disease and Creutzfeldt-Jakob Disease or CJD (the human variant of mad cow disease) and also familial amyloid polyneuropathy or FAP. FAP was been first described in 1939 in the Portuguese population and is believed to have been spread by Portuguese sailors to Sweden and Japan, and from there to the rest of the world. The condition results from a mutation in the gene coding for transthyretin (TTR), a human plasma protein, that becomes insoluble creating the particular amyloids of FAP.

Although FAP is provoked by a single gene mutation, symptoms and disease mortality vary enormously among patients. Portuguese sufferers, for example, tend to have an early disease onset (around 20-35 years of age) and an extremely severe disease with multiple organs affected, including peripheral nerves, kidney, heart, stomach and the small intestine. Patients tend to die within 10 years although some might last less than 2 years. In Sweden, on the other hand, the majority of patients have a much later disease onset, usually after the age of 50, and a much slower disease progression. Such variations have made scientists believe that other factors, such as the environment or additional genes, were also involved in the pathology.



Now Miguel L. Soares, Teresa Coelho, Joel N. Buxbaum and colleagues from research groups in Portugal and the US, in an attempt to understand the variations observed in the disease, studied 92 patients with different severity and age of onset. The team of scientists looked at genes involved either with TTR function (genes coding for proteins that metabolically interact with TTR) or amyloid deposition. Soares, Coelho, Buxbaum and colleagues’ results seem to indicate that the variability in disease found among different patients originates, not from the action of a particular gene, but from the combined interaction of several genes. The genes proposed to be involved in FAP include the APCS gene, which code for a protein found in the FAP amyloid deposit and the RBP gene which codes for retinol-binding protein, a vitamin A carrier which circulates in the plasma bound to TTR and so it can affect TTR solubility. Interestingly too, it seems that different ages of onset are influenced by distinct sets of genes (in addition to the TTR mutation) almost as independent diseases.

Soares, Coelho, Buxbaum and colleagues’ results are very interesting as, with further studies, they might be used to predict disease and consequently help the treatment of patients with TTR mutation but yet with no symptoms. Their work might also help to understand why elderly individuals, with no mutation in the TTR gene, can, nevertheless, present extended amyloid deposits and suffer the consequently organ damage. Finally, their studies might also contribute to research into the mechanisms behind other amyloidoses such as CJD or Alzheimer’s.

Piece researched and written by: Catarina Amorim (catarina.amorim@linacre.ox.ac.uk)

Catarina Amorim | alfa
Further information:
http://hmg.oupjournals.org/cgi/content/abstract/14/4/543

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>