Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists disprove two tenets of common leukemia


Scientists at the Institute for Medical Research at North Shore-LIJ have made a discovery that refutes two longstanding beliefs about the most common leukemia in the western hemisphere. Due to the relatively slow disease progression of chronic lymphocytic leukemia (CLL), doctors thought it was caused by a gradual accumulation of leukemia cells that could not die. The new findings, published online today in the Journal of Clinical Investigation, prove the exact opposite. The study will appear in the journal’s March 2005 print issue.

For decades, doctors and scientists believed that CLL was a static disease of long-lived white blood cells (lymphocytes) -- that the leukemia cells were both immortal and born at a slow rate, causing the slow rise in cell count over time. But researchers had been unable to find any problems with the leukemia cells’ process of cell suicide, called apoptosis, a normal part of the cell life cycle for which all cells are programmed. This was a hint that perhaps the leukemia cells were not immortal. Using a clever study design that required subjects only to drink water and give blood samples, the research team, led by Nicholas Chiorazzi, MD, director and CEO of the Institute for Medical Research, found that the leukemia cells are born at a fast rate and do indeed die. The slow rise in the cell count over time can be attributed to the difference between the birth and death rates of the cells, according to the study.

The scientists also found that there appeared to be a connection between poorer patient outcomes and the faster birth rates of the leukemia cells, regardless of the rate of cell death. "This particular finding may prove helpful in identifying patients who are at risk for worsening disease in advance of showing any clinical signs of deterioration," said Dr. Chiorazzi. He cautioned, however, that additional research is needed to establish its potential in guiding prognostic and treatment decisions. The study was small, examining 19 CLL patients.

A larger trial is already underway to gain greater insights into the correlation and its potential clinical applications. The multicenter study is being led by Kanti Rai, MD, associate investigator with the Institute for Medical Research, chief of the Division of Hematology-Oncology at Long Island Jewish (LIJ) Medical Center and a world-renowned expert on CLL. More than 25 years ago, Dr. Rai developed a staging system for CLL that is still used today. Tahrun Wasil, MD, another well-known attending hematologist-oncologist at LIJ, is co-leading the trial with Dr. Rai. The study is being conducted in conjunction with the CLL Research Consortium (CRC), a multi-institutional project funded by the National Institutes of Health. The CRC includes LIJ Medical Center, University of California at San Diego, M.D. Anderson Cancer Center, Ohio State University, Johns Hopkins University, Dana Farber Cancer Institute, Mayo Clinic, and several sites that perform laboratory work alone, including the Burnham Institute and Sydney Kimmel Cancer Center.

To test his theory that leukemia cells were not immortal, Dr. Chiorazzi used "heavy water" to track cell production. Heavy water is simply water that weighs more at the molecular level than normal. Among its many uses in the body, water gets incorporated into everyone’s DNA. When a cell divides into two, the new cell gets an exact copy of the DNA from the original cell, so the incorporated heavy water serves as a tag that allows scientists to track the birth of new cells.

The researchers gave individuals with CLL a small dose of heavy water -- about two ounces -- every day over the course of 12 weeks, enough time for the cells to incorporate a sufficient amount into their DNA. From blood samples, they calculated the birth and death rates of leukemia cells. They found that CLL is very much a dynamic process composed of mortal cells that proliferate and die, often with a high turnover, and not a static disease in which leukemia cells slowly build up because they cannot die, as previously thought.

Christina Verni | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>