Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study provides insights on why some prostate cancer becomes resistant to hormone withdrawl therapy

26.01.2005


A new study by scientists at Fred Hutchinson Cancer Research Center provides insight into why some men develop aggressive prostate cancer that becomes resistant to hormone-withdrawal therapy, a common form of treatment.



Researchers found that certain mutations in a protein called the androgen receptor cause advanced and invasive prostate cancer when put into otherwise healthy mice. The androgen receptor’s normal function is to control growth of the prostate gland in response to cues from male hormones called androgens, which have long been thought to stimulate prostate tumors.

Because similarly defective androgen receptors have been found in prostate-cancer patients whose disease is resistant to hormone withdrawal, the finding sheds light on why most men with advanced prostate cancer treated with hormone-withdrawal therapy fail to be cured. The work opens the door to discovery of new, more effective therapies, according to Norman Greenberg, Ph.D., a member of Fred Hutchinson’s Clinical Research Division.


The study is published in the Jan. 25, 2005 issue of the Proceedings of the National Academy of Sciences. The study was led by Dr. Guangzhou Han and colleagues.

Greenberg said that despite these and other earlier findings indicating a strong relationship between the androgen receptor and prostate cancer, no group had proved that it could be a key driver of disease. "Our study is the first to demonstrate that if the androgen receptor acquires certain mutations, it can cause prostate cancer in otherwise healthy mice," he said. "Because very similar mutations have been found in androgen receptors from prostate-cancer patients whose disease is resistant to hormone-withdrawal therapy, we think this is a very significant finding."

The results suggest that prostate-cancer prevention trials involving drugs that lower a man’s androgen levels should proceed cautiously, since complete androgen withdrawal seems to provide an environment that favors the development of the cancer-causing mutations. In addition, the work is the first to show that a class of proteins called steroid receptors, of which the androgen receptor is a member, can become cancer-causing genes known as oncogenes. The estrogen and progesterone receptors--two receptors that become defective in many breast cancers--are also members of this protein family.

The androgen receptor is a protein produced by prostate cells that binds to androgens, a family of chemically related hormones that includes testosterone. Although the binding of androgens to the receptor is important for healthy prostate development, the hormones may, under some conditions, stimulate the prostate-tumor cells to divide. For that reason, many men with advanced prostate cancer are treated with drugs that either block the production of androgens or the ability of the androgens to interact with their receptor.

About 90 percent of the time, prostate tumors shrink after hormone deprivation, but in most cases, it is believed that a small percentage of the tumor cells become resistant. Eventually, these resistant cells grow to become the predominant cancer, and no successful therapies have yet been developed for men with the hormone-withdrawal-resistant form of the disease.

In their study, researchers identified several mutations that impair the ability of the androgen receptor to interact with proteins called co-regulators. Co-regulators help the receptor to carry out its functions at the proper time; therefore, lack of interaction between the receptor and the appropriate co-regulators is thought to spur cancer development. Analogous mutant receptors also have been found in human prostate cancers.

Researchers wondered what would happen if they put the mutant receptors into otherwise healthy mice that also contained a normal version of the androgen receptor. They found that 100 percent of the time, the addition of one particular mutant receptor cause rapid development of a precancerous condition that progressed to advanced disease. In contrast, mice with extra copies of a normal receptor, as well as mice with the normal receptor and an unrelated type of mutant receptor, did not cause cancer.

"This demonstrates a causal role for certain androgen receptor mutations in prostate cancer," Greenberg said. Not all men with hormone-withdrawal-resistant disease develop such mutations, Greenberg said. Yet hormone-deprivation treatment can create a situation in some prostate tumors in which such mutations give a growth advantage to cancer cells.

Such mutant receptors might prove to be good drug targets, Greenberg said.

"These and other mutant forms of the receptor should be potential targets for new drugs that will be particularly effective in men whose cancers have these mutations and related events," he said. Because androgen deprivation has numerous side effects--including bone loss and sexual dysfunction--drugs that specifically attack the cancer-causing protein would be much more desirable than existing therapies. Drugs that effectively work against certain mutant proteins have been developed for other cancers, including Iressa for lung cancer and Gleevec for chronic myeloid leukemia.

Since the mutations Greenberg’s lab studied appear to affect one specific function of the androgen receptor, it may also be possible to develop drugs that target other proteins that collaborate with the androgen receptor in this pathway. Greenberg’s lab is now studying this pathway, with the hope of providing more insight into the drug discovery process.

Dean Forbes | EurekAlert!
Further information:
http://www.fhcrc.org

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>