Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study provides insights on why some prostate cancer becomes resistant to hormone withdrawl therapy

26.01.2005


A new study by scientists at Fred Hutchinson Cancer Research Center provides insight into why some men develop aggressive prostate cancer that becomes resistant to hormone-withdrawal therapy, a common form of treatment.



Researchers found that certain mutations in a protein called the androgen receptor cause advanced and invasive prostate cancer when put into otherwise healthy mice. The androgen receptor’s normal function is to control growth of the prostate gland in response to cues from male hormones called androgens, which have long been thought to stimulate prostate tumors.

Because similarly defective androgen receptors have been found in prostate-cancer patients whose disease is resistant to hormone withdrawal, the finding sheds light on why most men with advanced prostate cancer treated with hormone-withdrawal therapy fail to be cured. The work opens the door to discovery of new, more effective therapies, according to Norman Greenberg, Ph.D., a member of Fred Hutchinson’s Clinical Research Division.


The study is published in the Jan. 25, 2005 issue of the Proceedings of the National Academy of Sciences. The study was led by Dr. Guangzhou Han and colleagues.

Greenberg said that despite these and other earlier findings indicating a strong relationship between the androgen receptor and prostate cancer, no group had proved that it could be a key driver of disease. "Our study is the first to demonstrate that if the androgen receptor acquires certain mutations, it can cause prostate cancer in otherwise healthy mice," he said. "Because very similar mutations have been found in androgen receptors from prostate-cancer patients whose disease is resistant to hormone-withdrawal therapy, we think this is a very significant finding."

The results suggest that prostate-cancer prevention trials involving drugs that lower a man’s androgen levels should proceed cautiously, since complete androgen withdrawal seems to provide an environment that favors the development of the cancer-causing mutations. In addition, the work is the first to show that a class of proteins called steroid receptors, of which the androgen receptor is a member, can become cancer-causing genes known as oncogenes. The estrogen and progesterone receptors--two receptors that become defective in many breast cancers--are also members of this protein family.

The androgen receptor is a protein produced by prostate cells that binds to androgens, a family of chemically related hormones that includes testosterone. Although the binding of androgens to the receptor is important for healthy prostate development, the hormones may, under some conditions, stimulate the prostate-tumor cells to divide. For that reason, many men with advanced prostate cancer are treated with drugs that either block the production of androgens or the ability of the androgens to interact with their receptor.

About 90 percent of the time, prostate tumors shrink after hormone deprivation, but in most cases, it is believed that a small percentage of the tumor cells become resistant. Eventually, these resistant cells grow to become the predominant cancer, and no successful therapies have yet been developed for men with the hormone-withdrawal-resistant form of the disease.

In their study, researchers identified several mutations that impair the ability of the androgen receptor to interact with proteins called co-regulators. Co-regulators help the receptor to carry out its functions at the proper time; therefore, lack of interaction between the receptor and the appropriate co-regulators is thought to spur cancer development. Analogous mutant receptors also have been found in human prostate cancers.

Researchers wondered what would happen if they put the mutant receptors into otherwise healthy mice that also contained a normal version of the androgen receptor. They found that 100 percent of the time, the addition of one particular mutant receptor cause rapid development of a precancerous condition that progressed to advanced disease. In contrast, mice with extra copies of a normal receptor, as well as mice with the normal receptor and an unrelated type of mutant receptor, did not cause cancer.

"This demonstrates a causal role for certain androgen receptor mutations in prostate cancer," Greenberg said. Not all men with hormone-withdrawal-resistant disease develop such mutations, Greenberg said. Yet hormone-deprivation treatment can create a situation in some prostate tumors in which such mutations give a growth advantage to cancer cells.

Such mutant receptors might prove to be good drug targets, Greenberg said.

"These and other mutant forms of the receptor should be potential targets for new drugs that will be particularly effective in men whose cancers have these mutations and related events," he said. Because androgen deprivation has numerous side effects--including bone loss and sexual dysfunction--drugs that specifically attack the cancer-causing protein would be much more desirable than existing therapies. Drugs that effectively work against certain mutant proteins have been developed for other cancers, including Iressa for lung cancer and Gleevec for chronic myeloid leukemia.

Since the mutations Greenberg’s lab studied appear to affect one specific function of the androgen receptor, it may also be possible to develop drugs that target other proteins that collaborate with the androgen receptor in this pathway. Greenberg’s lab is now studying this pathway, with the hope of providing more insight into the drug discovery process.

Dean Forbes | EurekAlert!
Further information:
http://www.fhcrc.org

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>