Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two minutes of magnetic stimulation can change your brain for an hour

20.01.2005


A couple of minutes is all it takes to ’knock out’ bits of your brain for an hour, according to a new study by a University College London (UCL) team. The team have been working on ways to improve a method known as transcranial magnetic stimulation (TMS) and are now using their adapted version of TMS to investigate possible treatments for stroke patients or those with Parkinson’s disease.



In the latest issue of the journal Neuron, Professor John Rothwell and colleagues from UCL’s Institute of Neurology discovered ways to improve TMS to produce effects on the brain that last for more than an hour after only 40 seconds of stimulation. Longer-lasting effects will enable scientists to use TMS to modify brain activity in conditions ranging from depression to brain damage.

TMS stimulates the brain via a magnetic coil held outside the skull which can be moved over different parts of the brain. The magnetic fields created by the coil induce tiny electrical currents inside the skull that alter the activity of neural pathways, stimulating or inhibiting activity in parts of the brain.


The technique has been used predominantly as a research tool to study how the healthy brain reacts to injury or damage but scientists have recently started to explore its possibilities as a treatment for depression, epilepsy, stroke and Parkinson’s disease. A handful of studies have already shown potential therapeutic benefits from TMS.

The advantage of TMS is that it is non-invasive and does not require a patient to be hospitalized i.e. the treatment can be given in an out-patient clinic. However, the drawback in the past has been that TMS led to only transient neurological effects which rarely lasted longer than 30 minutes. The new method pioneered by the UCL team holds promise that much longer lasting and more powerful effects can be produced.

Professor Rothwell’s team adapted the technique by testing different patterns of repetitive magnetic pulses to the scalps of volunteers, delivered over a period of 20 to 190 seconds. The pulses were aimed at the motor cortex that controls muscle response, because effects on the motor cortex can be objectively measured by recording the amount of electrical muscle response to stimulation.

The researchers positioned the magnetic coil over the motor cortex area that controls hand movement and measured the amount of muscle response in a small muscle in the subjects’ hands. They discovered that the excitatory effect of TMS builds up rapidly, within about a second, while the inhibitory effect builds up within several seconds. Thus, by adjusting the length of stimulation, they could choose between stimulating or suppressive effects on the brain.

The team were able to produce rapid, consistent and controllable changes in the motor cortex area, lasting double the amount of time of conventional TMS. Initial tests performed to assess the safety of TMS showed that there were no long-lasting or side effects from these stimulations.

Professor Rothwell says: "Now that we have improved the technique, we can use it to explore whether stimulation of damaged areas in stroke patients’ brains can help speed up their recovery. Alternatively, it may be that in some patients the ’healthy’ side of the brain interferes with recovery by the damaged side, so that another approach would be to reduce its activity and stop it competing for control."

Rothwell’s team are also investigating the possibility of applying the method to patients with Parkinson’s disease or dystonia.

Jenny Gimpel | EurekAlert!
Further information:
http://www.ucl.ac.uk

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>