Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two minutes of magnetic stimulation can change your brain for an hour

20.01.2005


A couple of minutes is all it takes to ’knock out’ bits of your brain for an hour, according to a new study by a University College London (UCL) team. The team have been working on ways to improve a method known as transcranial magnetic stimulation (TMS) and are now using their adapted version of TMS to investigate possible treatments for stroke patients or those with Parkinson’s disease.



In the latest issue of the journal Neuron, Professor John Rothwell and colleagues from UCL’s Institute of Neurology discovered ways to improve TMS to produce effects on the brain that last for more than an hour after only 40 seconds of stimulation. Longer-lasting effects will enable scientists to use TMS to modify brain activity in conditions ranging from depression to brain damage.

TMS stimulates the brain via a magnetic coil held outside the skull which can be moved over different parts of the brain. The magnetic fields created by the coil induce tiny electrical currents inside the skull that alter the activity of neural pathways, stimulating or inhibiting activity in parts of the brain.


The technique has been used predominantly as a research tool to study how the healthy brain reacts to injury or damage but scientists have recently started to explore its possibilities as a treatment for depression, epilepsy, stroke and Parkinson’s disease. A handful of studies have already shown potential therapeutic benefits from TMS.

The advantage of TMS is that it is non-invasive and does not require a patient to be hospitalized i.e. the treatment can be given in an out-patient clinic. However, the drawback in the past has been that TMS led to only transient neurological effects which rarely lasted longer than 30 minutes. The new method pioneered by the UCL team holds promise that much longer lasting and more powerful effects can be produced.

Professor Rothwell’s team adapted the technique by testing different patterns of repetitive magnetic pulses to the scalps of volunteers, delivered over a period of 20 to 190 seconds. The pulses were aimed at the motor cortex that controls muscle response, because effects on the motor cortex can be objectively measured by recording the amount of electrical muscle response to stimulation.

The researchers positioned the magnetic coil over the motor cortex area that controls hand movement and measured the amount of muscle response in a small muscle in the subjects’ hands. They discovered that the excitatory effect of TMS builds up rapidly, within about a second, while the inhibitory effect builds up within several seconds. Thus, by adjusting the length of stimulation, they could choose between stimulating or suppressive effects on the brain.

The team were able to produce rapid, consistent and controllable changes in the motor cortex area, lasting double the amount of time of conventional TMS. Initial tests performed to assess the safety of TMS showed that there were no long-lasting or side effects from these stimulations.

Professor Rothwell says: "Now that we have improved the technique, we can use it to explore whether stimulation of damaged areas in stroke patients’ brains can help speed up their recovery. Alternatively, it may be that in some patients the ’healthy’ side of the brain interferes with recovery by the damaged side, so that another approach would be to reduce its activity and stop it competing for control."

Rothwell’s team are also investigating the possibility of applying the method to patients with Parkinson’s disease or dystonia.

Jenny Gimpel | EurekAlert!
Further information:
http://www.ucl.ac.uk

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>