Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two minutes of magnetic stimulation can change your brain for an hour

20.01.2005


A couple of minutes is all it takes to ’knock out’ bits of your brain for an hour, according to a new study by a University College London (UCL) team. The team have been working on ways to improve a method known as transcranial magnetic stimulation (TMS) and are now using their adapted version of TMS to investigate possible treatments for stroke patients or those with Parkinson’s disease.



In the latest issue of the journal Neuron, Professor John Rothwell and colleagues from UCL’s Institute of Neurology discovered ways to improve TMS to produce effects on the brain that last for more than an hour after only 40 seconds of stimulation. Longer-lasting effects will enable scientists to use TMS to modify brain activity in conditions ranging from depression to brain damage.

TMS stimulates the brain via a magnetic coil held outside the skull which can be moved over different parts of the brain. The magnetic fields created by the coil induce tiny electrical currents inside the skull that alter the activity of neural pathways, stimulating or inhibiting activity in parts of the brain.


The technique has been used predominantly as a research tool to study how the healthy brain reacts to injury or damage but scientists have recently started to explore its possibilities as a treatment for depression, epilepsy, stroke and Parkinson’s disease. A handful of studies have already shown potential therapeutic benefits from TMS.

The advantage of TMS is that it is non-invasive and does not require a patient to be hospitalized i.e. the treatment can be given in an out-patient clinic. However, the drawback in the past has been that TMS led to only transient neurological effects which rarely lasted longer than 30 minutes. The new method pioneered by the UCL team holds promise that much longer lasting and more powerful effects can be produced.

Professor Rothwell’s team adapted the technique by testing different patterns of repetitive magnetic pulses to the scalps of volunteers, delivered over a period of 20 to 190 seconds. The pulses were aimed at the motor cortex that controls muscle response, because effects on the motor cortex can be objectively measured by recording the amount of electrical muscle response to stimulation.

The researchers positioned the magnetic coil over the motor cortex area that controls hand movement and measured the amount of muscle response in a small muscle in the subjects’ hands. They discovered that the excitatory effect of TMS builds up rapidly, within about a second, while the inhibitory effect builds up within several seconds. Thus, by adjusting the length of stimulation, they could choose between stimulating or suppressive effects on the brain.

The team were able to produce rapid, consistent and controllable changes in the motor cortex area, lasting double the amount of time of conventional TMS. Initial tests performed to assess the safety of TMS showed that there were no long-lasting or side effects from these stimulations.

Professor Rothwell says: "Now that we have improved the technique, we can use it to explore whether stimulation of damaged areas in stroke patients’ brains can help speed up their recovery. Alternatively, it may be that in some patients the ’healthy’ side of the brain interferes with recovery by the damaged side, so that another approach would be to reduce its activity and stop it competing for control."

Rothwell’s team are also investigating the possibility of applying the method to patients with Parkinson’s disease or dystonia.

Jenny Gimpel | EurekAlert!
Further information:
http://www.ucl.ac.uk

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>