Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover new mechanism for the amygdala in fear recognition

06.01.2005


A look of fear on another person’s face is instantly recognizable. The split-second ability of the amygdala, a small, almond-shaped structure deep in the brain, distinguishes fear in facial expressions. In particular, the amygdala relies heavily on visual information contained in the eye region to detect fear.



A new study by scientists at the University of Iowa, the California Institute of Technology and their colleagues sheds more light on how the amygdala works. The study, published in the Jan. 6 issue of Nature, suggests that the mechanism by which the amygdala contributes to processing visual information about facial expressions is by actively directing a person’s gaze to the eye region to seek out and fixate on the critical visual cues for fear.

"People often think of the brain as passively receiving information from the senses about the world. This study shows that there are mechanisms in the brain that allow us to actively seek out information in the environment in the first place," said Ralph Adolphs, Ph.D., UI adjunct professor of neurology and professor of psychology and neuroscience at the California Institute of Technology.


The study extends the group’s decade-long investigation involving patients who are essentially unable to recognize fearful expressions because of a damaged amygdala. The current series of experiments showed that a particular patient fails to make use of information about the eyes in faces, and one reason for that is that she fails to look at the eyes in faces in the first place.

The researchers found that they could restore the patient’s ability to distinguish fear in facial expressions to normal levels by specifically instructing her to look at the eye region. However, this instruction had to be given each time the patient viewed a face otherwise she resumed her abnormal gaze pattern, did not fixate on the eyes and was not able to discern fear.

The findings suggest that the amygdala damage disrupts the patient’s ability to direct her own gaze toward the eyes in other people’s faces, which deprives her of the critical visual cues to detect fearful expressions.

If the patient could be trained to always look at the eyes, the researchers suggest that her impaired fear recognition could be rescued permanently. The study may have implications for conditions such as autism, where patients also show abnormal fixation on facial features and have a disrupted ability to interpret emotion from facial expressions.

"That the amygdala is critical for recognizing fear expressions has been evident from prior studies," said Antonio Damasio, M.D., Ph.D., the Maurice Van Allen Professor and head of neurology at the UI Roy J. and Lucille A. Carver College of Medicine. "The new findings, however, suggest a specific mechanism for the impairments of fear recognition that can be found in patients with amygdala damage."

"This study tells us how it is that the amygdala plays a role in recognizing fear and in so doing it shows us that the amygdala isn’t specialized just to detect fear in faces but really serves a more abstract and general role in seeking out potentially important and salient information in the environment," Adolphs added.

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>