Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover new mechanism for the amygdala in fear recognition

06.01.2005


A look of fear on another person’s face is instantly recognizable. The split-second ability of the amygdala, a small, almond-shaped structure deep in the brain, distinguishes fear in facial expressions. In particular, the amygdala relies heavily on visual information contained in the eye region to detect fear.



A new study by scientists at the University of Iowa, the California Institute of Technology and their colleagues sheds more light on how the amygdala works. The study, published in the Jan. 6 issue of Nature, suggests that the mechanism by which the amygdala contributes to processing visual information about facial expressions is by actively directing a person’s gaze to the eye region to seek out and fixate on the critical visual cues for fear.

"People often think of the brain as passively receiving information from the senses about the world. This study shows that there are mechanisms in the brain that allow us to actively seek out information in the environment in the first place," said Ralph Adolphs, Ph.D., UI adjunct professor of neurology and professor of psychology and neuroscience at the California Institute of Technology.


The study extends the group’s decade-long investigation involving patients who are essentially unable to recognize fearful expressions because of a damaged amygdala. The current series of experiments showed that a particular patient fails to make use of information about the eyes in faces, and one reason for that is that she fails to look at the eyes in faces in the first place.

The researchers found that they could restore the patient’s ability to distinguish fear in facial expressions to normal levels by specifically instructing her to look at the eye region. However, this instruction had to be given each time the patient viewed a face otherwise she resumed her abnormal gaze pattern, did not fixate on the eyes and was not able to discern fear.

The findings suggest that the amygdala damage disrupts the patient’s ability to direct her own gaze toward the eyes in other people’s faces, which deprives her of the critical visual cues to detect fearful expressions.

If the patient could be trained to always look at the eyes, the researchers suggest that her impaired fear recognition could be rescued permanently. The study may have implications for conditions such as autism, where patients also show abnormal fixation on facial features and have a disrupted ability to interpret emotion from facial expressions.

"That the amygdala is critical for recognizing fear expressions has been evident from prior studies," said Antonio Damasio, M.D., Ph.D., the Maurice Van Allen Professor and head of neurology at the UI Roy J. and Lucille A. Carver College of Medicine. "The new findings, however, suggest a specific mechanism for the impairments of fear recognition that can be found in patients with amygdala damage."

"This study tells us how it is that the amygdala plays a role in recognizing fear and in so doing it shows us that the amygdala isn’t specialized just to detect fear in faces but really serves a more abstract and general role in seeking out potentially important and salient information in the environment," Adolphs added.

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>