Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers aim to mend broken hearts

05.01.2005


In a paper published this week in the online edition of the Proceedings of the National Academy of Sciences, engineers report creating a small swatch of heart tissue that displays many of the hallmarks of mature cardiac tissue, including regular contractions.



"We have been trying to engineer a patch of tissue that has the same properties as native heart tissue, or myocardium, that could be attached over injured myocardium," said Gordana Vunjak-Novakovic, a principal research scientist in the Harvard-MIT Division of Health Sciences and Technology (HST) who led the team of researchers.

"Think of it as a patch for a broken heart," she said.


The approach involves seeding cardiac cells, in this case from a rat, onto a 3-D polymer scaffold that slowly biodegrades as the cells develop into a full tissue. The cell/scaffolds, which are a little smaller than a dime and about the same thickness, are bathed in a medium that supplies nutrients and gases.

In a patent-pending technique, the researchers then apply electrical signals designed to mimic those in a native heart. They do so by essentially connecting the cell/scaffolds to a pacemaker. "Initially we had no idea if this would work. As it turns out, electrical stimulation was crucial for rapid assembly of functional tissue," said recent graduate Milica Radisic (Ph.D. 2004), who will be joining the faculty of the University of Toronto next year.

After only eight days of cultivation, single cells grew into a tissue "with a remarkable level of structural and functional organization," Vunjak-Novakovic said. "The real advance here is we mimicked what the body does itself and got it to work," said Robert Langer, the Germeshausen Professor of Chemical and Biomedical Engineering and another member of the team. "The greatest challenge," said Vunjak-Novakovic, "is to reproduce this with human cells, and test how all this works in the body."

Other authors of the PNAS article are Hyoungshin Park, an HST research engineer and co-first author with Radisic; Helen Shing and Frederick Schoen of Harvard Medical School; Thomas Consi, now on the faculty at the University of Wisconsin, Milwaukee; and Lisa Freed, an HST principal research scientist.

This work was funded by NASA, the NIH, and a Poitras fellowship.

A version of this article appeared in the December 15, 2004 issue of MIT Tech Talk (Volume 49, Number 13).

Elizabeth Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Plant escape from waterlogging

17.10.2017 | Life Sciences

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>