Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Engineers aim to mend broken hearts


In a paper published this week in the online edition of the Proceedings of the National Academy of Sciences, engineers report creating a small swatch of heart tissue that displays many of the hallmarks of mature cardiac tissue, including regular contractions.

"We have been trying to engineer a patch of tissue that has the same properties as native heart tissue, or myocardium, that could be attached over injured myocardium," said Gordana Vunjak-Novakovic, a principal research scientist in the Harvard-MIT Division of Health Sciences and Technology (HST) who led the team of researchers.

"Think of it as a patch for a broken heart," she said.

The approach involves seeding cardiac cells, in this case from a rat, onto a 3-D polymer scaffold that slowly biodegrades as the cells develop into a full tissue. The cell/scaffolds, which are a little smaller than a dime and about the same thickness, are bathed in a medium that supplies nutrients and gases.

In a patent-pending technique, the researchers then apply electrical signals designed to mimic those in a native heart. They do so by essentially connecting the cell/scaffolds to a pacemaker. "Initially we had no idea if this would work. As it turns out, electrical stimulation was crucial for rapid assembly of functional tissue," said recent graduate Milica Radisic (Ph.D. 2004), who will be joining the faculty of the University of Toronto next year.

After only eight days of cultivation, single cells grew into a tissue "with a remarkable level of structural and functional organization," Vunjak-Novakovic said. "The real advance here is we mimicked what the body does itself and got it to work," said Robert Langer, the Germeshausen Professor of Chemical and Biomedical Engineering and another member of the team. "The greatest challenge," said Vunjak-Novakovic, "is to reproduce this with human cells, and test how all this works in the body."

Other authors of the PNAS article are Hyoungshin Park, an HST research engineer and co-first author with Radisic; Helen Shing and Frederick Schoen of Harvard Medical School; Thomas Consi, now on the faculty at the University of Wisconsin, Milwaukee; and Lisa Freed, an HST principal research scientist.

This work was funded by NASA, the NIH, and a Poitras fellowship.

A version of this article appeared in the December 15, 2004 issue of MIT Tech Talk (Volume 49, Number 13).

Elizabeth Thomson | MIT News Office
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>