Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover clues to cirrhosis

20.12.2004


Researchers at the University of Essex have found new biochemical indicators of cirrhosis in blood plasma which could help detect the disease in its early stages.



The findings of the project, which was led by Professor Paul Thornalley, of the Disease Mechanisms and Therapeutics Research Group in the Department of Biological Sciences, suggest these markers could be used to assess damage to the liver and the likelihood of developing cirrhosis which could have a significant effect on choosing appropriate therapy.

Cirrhosis is scarring of the liver involving the formation of fibrous (scar) tissue. There is severe impairment of liver function in the advanced state but recent advances in drug development have led to the view that fibrosis may in the future become reversible.


In the UK, cirrhosis is mainly caused by chronic alcohol abuse and hepatitis C infection. Ten to fifteen per cent of chronic alcoholic subjects develop alcoholic cirrhosis, of whom 75 per cent will eventually die as a consequence of liver disease. Inflammation in the liver with uncontrolled damage to lipids is thought to be involved. The new marker discovered is the debris of proteins damaged in the liver during the development of the disease by reaction with glyoxal which may be lipid or alcohol-derived.

Professor Thornalley, who collaborated with research teams in Düsseldorf and Würzburg, Germany, explained: ’Further time course studies will be required to assess the reliability of these markers in assessment of the development of cirrhosis. Since protein damage is an early hallmark of cirrhosis, it is likely that debris from this damage, leaking into the blood, will provide a novel biochemical test for early liver damage.’

The research project has been supported by the Wellcome Trust (UK) and the findings have been published online in the Journal of Hepatology (Elsevier).

Kate Cleveland | alfa
Further information:
http://www.essex.ac.uk/news

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>