Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A genetic difference at the opiate receptor gene affects a person’s response to alcohol

15.12.2004


  • Previous research has implicated the brain’s opioid system in the development of alcohol-use disorders.
  • New findings indicate that individuals with the G variant of the A118 polymorphism of the OPRM1 gene have greater subjective feelings to alcohol’s effects as well as a greater likelihood of a family history of alcohol-use disorders.

Previous research has implicated the brain’s opioid system in the development of alcohol-use disorders. The mu-opioid receptor, which is encoded by the OPRM1 gene, is the primary site of action for opiates with high abuse potential, such as opium and heroin, and may also contribute to the effects of non-opioid drugs, such as cocaine and alcohol. Findings published in the December issue of Alcoholism: Clinical & Experimental Research indicate that individuals with the G variant of the A118 polymorphism of the OPRM1 gene have greater subjective feelings to alcohol’s effects as well as a greater likelihood of a family history of alcohol-use disorders.



"Alcohol releases endogenous opiates which, in turn, seem to influence the mesolimbic dopamine system," said Kent E. Hutchison, associate professor of psychology at the University of Colorado at Boulder and lead author of the study. "This system is involved in craving and the motivation to use alcohol and drugs. Thus, it is alcohol’s effects on endogenous opioids that act as the gateway through which alcohol may influence this system."

"It is well known that alcohol dependence tends to run in families," said Robert Swift, professor of psychiatry and human behavior at Brown University and Associate Chief of Staff for Research at the Providence VA Medical Center. "The inheritance of alcoholism is complex, but there are suggestions that the opiate systems in the brain are involved. Our brains contain proteins, called enkephalins and endorphins, that act like morphine and other opiates derived from the poppy plant. Several researchers have shown that persons with a family history of alcoholism tend to have differences in blood levels of beta-endorphin, a natural opiate hormone, compared to persons without a family history of alcoholism. Children of alcoholics, who are not themselves alcoholics, have lower levels of beta-endorphin than do children of non-alcoholics. Also, when young adults with a family history of alcoholism drink alcohol, they increase their blood levels of beta-endorphin more than those without a family history of alcoholism."


A special protein called the mu-opioid receptor, which is located in the membranes of nerve cells, detects internal opiate neurotransmitters, such as beta-endorphin, that the brain uses to allow nerve cells to communicate with each other. Previous research has shown that the G variant of this gene has a slightly different receptor protein, which causes a big difference in how well the receptor connects with beta-endorphin. For example, the G variant receptor binds three times more tightly than the A variant to beta-endorphin, which means that a nerve cell with the G variant is more greatly affected by beta-endorphin. The net result is that dopamine cells, which play a role in motivation and reinforcement, become more stimulated.

For this study, participants comprised 38 students (20 male, 18 female) at the University of Colorado, 21 to 29 years of age, who indicated drinking patterns classified as moderate to heavy. Participants were either homozygous for the A allele (n=23) or heterozygous (n=15). Each received intravenous doses of alcohol that were designed to cause breath alcohol concentration (BAC) levels of .02, .04, and .06. Researchers measured subjective intoxication, stimulation, sedation, and mood states at baseline and at each of the three BAC levels.

Results indicate that individuals with the G allele had higher subjective feelings of intoxication, stimulation, sedation, and happiness across trials as compared to participants with the A allele.

"The implication is that the trajectory of alcohol dependence may be different among individuals with the G allele," said Hutchison. "If these individuals have a different level of sensitivity, they may also have a differential level of risk for developing alcohol dependence. They may also respond to alcohol treatments differently, especially those that target the mu-opioid receptors, such as naltrexone." Naltrexone treatment is designed to reduce feelings of euphoria after alcohol consumption by blocking beta-endorphin; in fact, a recent study by Dr. David Oslin and colleagues at the University of Pennsylvania suggests that individuals with the G allele may respond better to naltrexone treatment.

The study also found that participants with the G allele were almost three times more likely than those with the A allele to report a family history positive for alcohol-use disorders.

"This manuscript provides further evidence that how one responds to alcohol is inherited," said Swift. "However, it should be noted that the increased risk for alcoholism does not mean that someone with the G allele will necessarily become an alcoholic. The development of alcoholism is only partially determined by heredity. Environmental factors and life experience are as important as heredity."

"These findings add to our expanding knowledge about how genetic factors may influence responses to alcohol and the risk for developing alcohol dependence," said Hutchison. "Given recent growth in our knowledge about the human genome, we will see many more of these kinds of studies in the future." He and his colleagues plan to continue examining the influence of the G variant of the A118 polymorphism of the OPRM1 gene, as well as other genetic variants, on response to alcohol as well as tobacco and marijuana.

"The inheritance of alcoholism is complex," said Swift, "and there are certainly more genes, still undiscovered, that are involved in alcoholism. The search for these genes is an active area of investigation and well worth pursuing. Understanding the genetic basis of the response to alcohol and how it may predict risk for the development of alcoholism could be used as a kind of genetic counseling to help individuals at risk. Persons carrying a risk gene, if they are made aware of it, may be able to alter their drinking and reduce their risk of developing alcoholism."

| EurekAlert!
Further information:
http://www.alcoholism-cer.com
http://www.colorado.edu
http://www.brown.edu

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>