Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rush University Medical Center Testing Magnetic Stimulation for Depression

22.11.2004


Psychiatrists at Rush University Medical Center are testing a noninvasive technique that uses repeated short bursts of magnetic energy to stimulate nerve cells in the brain to treat major depression. The therapy is called Transcranial Magnetic Stimulation (TMS), and Rush is enrolling patients in a clinical trial to determine if TMS is safe and effective.



"We think that this is landmark research for a new antidepressant treatment," said Dr. Philip Janicak, Rush psychiatrist and the principal investigator for the study at Rush. "If proven effective, TMS could signal a radical shift in our approach to treating major depression." Depression is commonly treated with antidepressants and other pharmaceuticals, psychotherapy and electroconvulsive therapy (ECT) for severe cases when patients do not respond to other therapies.

This study focuses on patients who have not responded to antidepressant medication for their depression. Rush is one of 16 academic medical centers participating in this nationwide clinical trial. Smaller preliminary studies using TMS produced an antidepressant effect and led to the current research project. Information from this larger, more rigorous trial will be provided to the U.S. Food and Drug Administration to support regulatory clearance of the Neuronetics TMS System for use in treating depression.


The double-blind study will test the new treatment while controlling for this so-called "placebo effect." Janicak explained that this study, which includes a placebo (or sham) treatment, is needed because some patients improve simply due to the added attention they receive in a research study. Neither the doctor nor the patient will know which treatment, the active TMS or the placebo, is being used. After the initial treatment phase (four to six weeks), however, patients can be given the real TMS treatment if their symptoms have not improved.

Transcranial magnetic stimulation (TMS) produces pulses of magnetic energy that are aimed at a specific portion of the brain, the left prefrontal cortex. Researchers believe the left prefrontal cortex is involved in regulating mood.

TMS produces the same amount of magnetic energy as a standard MRI machine. However, instead of helping doctors look inside the body to diagnose disease, the pulses of magnetic energy produce an electric field that researchers believe causes positive changes in mood. "The amount of energy delivered to the brain is very small and very focused," Janicak said. Patients remain fully awake during the 45-minute outpatient procedure and can go about their normal activity before and after the procedure. TMS is performed without anesthesia, and it does not cause memory loss as is sometimes found with the use of ECT. Patients who qualify for the trial will initially receive 30 sessions over a period of six weeks.

The National Institute of Mental Health reports that depression affects more than 18 million adults every year. Even with recent advances in antidepressant medications, a significant percentage of patients experience treatment-resistant or recurrent episodes of depression. Some patients cannot tolerate medications.

This new research study, which involves hundreds of patients nationwide, will be a pivotal trial. If the results of the study are positive and the TMS procedure is approved by the U.S. FDA, an entirely new treatment option for patients suffering from depression would be available.

Rush is inviting qualified patients to volunteer to participate in this study. To qualify, patients must be:

  • between 18 and 70 years old.
  • suffering from a major depressive disorder.
  • able to provide written documentation that they have been unsuccessfully treated previously with antidepressant medication.

Patients who have been diagnosed with bipolar illness (manic depression) or obsessive-compulsive disorder are not eligible to participate in the trial.

For more information or to volunteer, call 1-800-345-8707.

Mary Ann Schultz | EurekAlert!
Further information:
http://www.rush.edu

More articles from Health and Medicine:

nachricht Researchers show p300 protein may suppress leukemia in MDS patients
28.03.2017 | University of Miami Miller School of Medicine

nachricht When writing interferes with hearing
28.03.2017 | Université de Genève

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>