Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nuclear imaging offers possibility for early detection of patients with coronary heart disease

16.11.2004


Nuclear imaging will play an increasing role in both the detection of atherosclerosis (coronary heart disease) and, more specifically, the composition of plaque build up that can block the flow of blood through an artery, according to journal reports published by the Society of Nuclear Medicine.



A trio of articles, "Evaluation of 18F-FDG Uptake and Arterial Wall Calcifications Using 18F-FDG PET/CT," "Molecular and Metabolic Imaging of Atherosclerosis" and "Noninvasive Imaging of Atherosclerosis: The Biology Behind the Pictures," appears in the November 2004 issue of "The Journal of Nuclear Medicine."

Heart disease, in the news recently because of former President Bill Clinton’s quadruple coronary artery bypass surgery, is one of the leading causes of death worldwide. According to SNM members Simona Ben-Haim, M.D., and Ora Israel, M.D., "combined positron emission tomography and computed tomography may be helpful in the detection of early abnormalities in the arterial wall." They said, "These abnormalities may be the cause of future severe cardiovascular events … the PET/CT scan may be potentially useful in early detection of disease, prevention, monitoring response to therapy and prognosis." This preliminary study, which took more than three years, could establish a role for nuclear medicine as a noninvasive imaging tool for atherosclerosis, providing both functional and anatomical information. The results of the study, one of the first of its kind, are detailed in "Evaluation of 18F-FDG Uptake and Arterial Wall Calcifications Using 18F-FDG PET/CT." While the results are exciting, the two authors said that more research is needed "to confirm our results and lead to the understanding of their clinical significance."


While Clinton’s angiogram showed he had blockage in some coronary arteries caused by fatty plaque accumulated over the years, the authors of "Molecular and Metabolic Imaging of Atherosclerosis" pointed out that, "recent advances in understanding of the pathobiology of atherosclerosis have highlighted the inadequacies" of imaging the disease with X-ray angiography. John R. Davies, B.Sc.; James H. Rudd, Ph.D.; and Peter L. Weissberg, M.D., stated the need for better imaging approaches and outlined the biology of atherosclerosis, reviewing both invasive and noninvasive (such as 18F-FDG PET) imaging techniques available, especially those that detect metabolic or inflammatory changes within detected plaque. Advances in understanding cell biology show a need for imaging techniques that can provide information about plaque composition and drive the development of more informative imaging techniques, they say. "Nuclear imaging has the potential to provide invaluable information on the cellular, metabolic and molecular composition of the plaque," note the authors.

In the journal’s invited perspective, "Noninvasive Imaging of Atherosclerosis: The Biology Behind the Pictures," Weissberg writes, "It has taken the best part of 50 years for us to learn that angiography tells us very little about atherosclerotic plaques." He added, "It is crucial that we learn more quickly what newer imaging techniques are telling us."

Maryann Verrillo | EurekAlert!
Further information:
http://www.snm.org

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>