Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Latest buzz in research: Intoxicated honey bees may clue scientists into drunken human behavior

25.10.2004


Inebriated bees could give researchers better insight into alcohol’s effects on human behavior, a new study suggests.



"Alcohol affects bees and humans in similar ways – it impairs motor functioning along with learning and memory processing," said Julie Mustard, a study co-author and a postdoctoral researcher in entomology at Ohio State University.

Researchers gave honey bees various levels of ethanol, the intoxicating agent in liquor, and monitored the ensuing behavioral effects of the drink – specifically how much time the bees spent flying, walking, standing still, grooming and flat on their backs, so drunk they couldn’t stand up. The researchers also measured the level of ethanol in the bees’ hemolymph – the circulatory fluid of insects that’s akin to blood.


Not surprisingly, increasing ethanol consumption meant bees spent less time flying, walking and grooming, and more time upside down. The appearance of inebriation occured sooner for bees that were given a larger dose of ethanol. Also, blood ethanol levels increased with time and the amount of ethanol consumed.

This study is preliminary – the researchers simply wanted to see what effects ethanol had on honey bee behavior. In the future, however, they hope to use honey bees as a model for learning more about how chronic alcohol use affects humans, particularly at the molecular level. "The honey bee nervous system is similar to that of vertebrates," said Geraldine Wright, a study co-author and a postdoctoral researcher in entomology at Ohio State.

Mustard concurred. "On the molecular level, the brains of honey bees and humans work the same. Knowing how chronic alcohol use affects genes and proteins in the honey bee brain may help us eventually understand how alcoholism affects memory and behavior in humans, as well as the molecular basis of addiction." The researchers presented their work on October 23 in San Diego at the annual Society for Neuroscience conference.

Honey bees were secured into a small harness made from a piece of drinking straw. The researchers then fed bees solutions of sucrose and ethanol, with several ethanol concentrations ranging from 10 to 100 percent. The 10 percent solution was equivalent to drinking wine, Wright said, while the 100 percent solution, which contained no sucrose, was equivalent to drinking 200-proof grain alcohol. A group of control bees was given sucrose only.

The scientists fed the bees and then observed them for 40 minutes, tracking the insects’ behaviors – how much time each bee spent walking, standing still, grooming, flying and upside down on its back. Blood ethanol concentrations increased with time and with the amount of ethanol each bee had consumed. Behavioral differences between the bees depended on the amount of ethanol ingested.

The bees that had consumed the highest concentrations of ethanol – 50, 75 and 100 percent – spent a majority of the observation period on their backs, unable to stand. This effect happened early on, within the first 10 minutes of the observation period. They also spent almost no time grooming or flying. "These bees had lost postural control," Mustard said. "They couldn’t coordinate their legs well enough to flip themselves back over again." Except for the control bees, bees that had consumed the least amount of ethanol – 10 percent – spent the least amount of time upside down. Even then, it took about 20 minutes for ethanol’s effect to set in and cause this behavior.

The researchers hope to learn how alcohol consumption affects social behavior as well as gain a better understanding of the basic mechanisms that drive alcohol addiction and tolerance. "Honey bees are very social animals, which makes them a great model for studying the effects of alcohol in a social context," Wright said. "Many people get aggressive when they drink too much," she continued. "We want to learn if ethanol consumption makes the normally calm, friendly honey bee more aggressive. We may be able to examine how ethanol affects the neural basis of aggression in this insect, and in turn learn how it affects humans."

Mustard and Wright conducted this research with Ohio State colleagues Brian Smith, a professor of entomology, and Ian Maze, an undergraduate student studying microbiology.

This research was funded in part by the Ohio State University Dean’s Undergraduate Research Award and the National Institutes of Health.

Julie Mustard | EurekAlert!
Further information:
http://www.osu.edu

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>