Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Melanin makes skin vulnerable to harmful ultraviolet rays

14.10.2004


Blondes and redheads not only are more susceptible to skin cancer, but the source of their skin and hair pigmentation, melanin, actually magnifies the damaging effects of ultraviolet (UV) rays, according to a study published online this week in the Proceedings of the National Academy of Sciences.



Melanin filters out UV radiation, but the melanin in hair follicles, particularly in light hair, actually increases the sun damaging effects of UV rays and causes cell death in the hair follicle, said Douglas Brash, principal investigator and professor of therapeutic radiology, genetics and dermatology at Yale School of Medicine.

Brash said he had been curious why people with dark hair and fair skin were not as vulnerable to skin cancer as fair skinned blondes and redheads. "I wondered if it was related to the melanin," he said. Brash’s laboratory used mice engineered with pigmentation for yellow or black hair, as well as albino mice with no pigment at all. The researchers then irradiated the mice with UV rays that are about the same as what breaks through the ozone layer, affecting humans.


The cell death was concentrated around the hair follicles, which are the only location of melanin in mice. Dying cells were particularly pronounced in the yellow-haired mice and was absent in albinos. "What this tells us is that melanin is not only good for you, it also can be bad. It depends on the color of your particular melanin," Brash said. "Even red melanin can vary widely, depending on whether your ancestors were Irish, Swedish or Dutch, and some of these variations are known to be associated with greater risk for skin cancer."

Jacqueline Weaver | EurekAlert!
Further information:
http://www.yale.edu

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Plant escape from waterlogging

17.10.2017 | Life Sciences

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>