A unique new non-invasive technique for high resolution optical imaging of the eye is receiving global acclaim. The technique, pioneered by the University of Kent, is funded by the Toronto-based company, Ophthalmic Technology Inc (OTI). The University’s Applied Optics Group is currently working with university hospitals in New York (USA), Osaka (Japan), Asahikawa (Japan), Amsterdam (Netherlands) and Milan (Italy) to carry out preliminary clinical trials. By combining two high-resolution imaging technologies, the new technique provides doctors with 3-D images of the retina, macula and the optic nerve. Such high resolution images provide clinicians with capabilities for early diagnosis and treatment of common ocular diseases such as glaucoma, diabetes and age-related macula degeneration. OTI is planning in the near future to extend the clinical research to other leading university medical centres in Japan, USA and Europe.
The Kent team, based in the School of Physical Sciences, is the only research group in the world carrying out this type of work. Co-ordinated by Professor Adrian Podoleanu, it operates out of two laboratories. One is in the UK at the University’s Canterbury campus and the other is in the United States at the New York Medical College, where Adrian Podoleanu is a Visiting Professor. Other members of the team include Professor David Jackson, Dr John Rogers, a former Kent PhD student now the director of OCT Research at OTI and lecturer George Dobre.
Adrian Podoleanu explained: ‘At Kent we created a very cost effective imaging system which simultaneously produces optical coherence tomography (OCT) and scanning laser ophthalmoscope (SLO) images. Its early potential was immediately realised by OTI, who commissioned the assembly of several prototypes to be tested in different clinics worldwide before embarking on commercial exploitation of the invention’.
Posie Bogan | alfa
Further information:
http://www.kent.ac.uk
GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University
Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center
University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.
Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.
Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...
Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.
The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...
Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.
Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...
In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...
Anzeige
Anzeige
Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"
13.04.2018 | Event News
Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018
12.04.2018 | Event News
IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur
09.04.2018 | Event News
Magnetic nano-imaging on a table top
20.04.2018 | Physics and Astronomy
Start of work for the world's largest electric truck
20.04.2018 | Interdisciplinary Research
Atoms may hum a tune from grand cosmic symphony
20.04.2018 | Physics and Astronomy