Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Therapeutic Target for Potential Rheumatic Disease Treatment

11.10.2004


Medical investigators at the Hospital for Special Surgery have identified an important new signaling pathway they believe could be a valuable target for scientists to aim at with future drug therapies that might one day reverse diseases such as systemic lupus erythematosus, according to a recent article published in “Nature Immunology.”



The chemical pathway involves the body’s responses to potent substances called cytokines which have dramatic influence on the progression, or reversal, of diseases such as rheumatoid arthritis and lupus.

Doctors have long known that cytokines can regulate diseases such as lupus, but it is now becoming appreciated that lupus can also make cytokines fail to work properly. What is not fully understood is just how the cytokines become “switched on” to cause damage. Understanding the molecular chemistry that turns on the switch becomes central to stemming disease.


The HHS in vitro and animal study work focused on the key role of interferon chemicals produced in the body as they impact cytokines production and influence inflammation. One particular kind of interferon (IFN), IFN-alpha, was believed to play a key role in lupus and is a therapeutic target for this disease. The investigators found that inflammation, as it occurs in lupus patients, changed cellular responses to IFN-alpha and made cellular response become more inflammatory and toxic.

This work supports a concept that is emerging from the laboratory of, Lionel B. Ivashkiv, M.D., lead investigator in the study at HSS published Oct 3, 2004 in “Nature Immunology.” The paper is titled “Amplification of IFN-alpha induced STAT1 activation and inflammatory function by Syk and ITAM-containing adaptors.”

Specifically Dr. Ivashkiv believes that cytokine signaling is reprogrammed in patients with rheumatic diseases. This reprogramming amplifies the toxic aspects of cytokines, while compromising the effectiveness of “good cytokines” that patients produce in their bodies in an attempt to heal themselves. “We found that if we inject these IFNs in a normal mouse, there was no effect but if we injected the IFN-alpha in a mouse with lupus, we saw evidence of an influx of cells and the start of inflammation at the site where it was injected,” said Dr. Ivashkiv.

“People with rheumatic diseases like lupus and arthritis have cytokine response problems that prevent these chemicals from working properly and doing what they are supposed to do to heal the body. If we can identify and influence the chemicals that result in this and prevent it from happening, we can prevent the cycle of inflammatory response that damages these patients instead of helping them,” said Dr. Ivashkiv.

In lupus, the immune system attacks the body’s own cells and tissue, especially the skin, joints, blood, heart, lungs and kidneys. It affects 1-1.5 million Americans and is a leading cause of kidney disease, stroke and cardiovascular disease in young women.

| newswise
Further information:
http://www.hss.edu
http://www.nature.com

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>