Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Therapeutic Target for Potential Rheumatic Disease Treatment

11.10.2004


Medical investigators at the Hospital for Special Surgery have identified an important new signaling pathway they believe could be a valuable target for scientists to aim at with future drug therapies that might one day reverse diseases such as systemic lupus erythematosus, according to a recent article published in “Nature Immunology.”



The chemical pathway involves the body’s responses to potent substances called cytokines which have dramatic influence on the progression, or reversal, of diseases such as rheumatoid arthritis and lupus.

Doctors have long known that cytokines can regulate diseases such as lupus, but it is now becoming appreciated that lupus can also make cytokines fail to work properly. What is not fully understood is just how the cytokines become “switched on” to cause damage. Understanding the molecular chemistry that turns on the switch becomes central to stemming disease.


The HHS in vitro and animal study work focused on the key role of interferon chemicals produced in the body as they impact cytokines production and influence inflammation. One particular kind of interferon (IFN), IFN-alpha, was believed to play a key role in lupus and is a therapeutic target for this disease. The investigators found that inflammation, as it occurs in lupus patients, changed cellular responses to IFN-alpha and made cellular response become more inflammatory and toxic.

This work supports a concept that is emerging from the laboratory of, Lionel B. Ivashkiv, M.D., lead investigator in the study at HSS published Oct 3, 2004 in “Nature Immunology.” The paper is titled “Amplification of IFN-alpha induced STAT1 activation and inflammatory function by Syk and ITAM-containing adaptors.”

Specifically Dr. Ivashkiv believes that cytokine signaling is reprogrammed in patients with rheumatic diseases. This reprogramming amplifies the toxic aspects of cytokines, while compromising the effectiveness of “good cytokines” that patients produce in their bodies in an attempt to heal themselves. “We found that if we inject these IFNs in a normal mouse, there was no effect but if we injected the IFN-alpha in a mouse with lupus, we saw evidence of an influx of cells and the start of inflammation at the site where it was injected,” said Dr. Ivashkiv.

“People with rheumatic diseases like lupus and arthritis have cytokine response problems that prevent these chemicals from working properly and doing what they are supposed to do to heal the body. If we can identify and influence the chemicals that result in this and prevent it from happening, we can prevent the cycle of inflammatory response that damages these patients instead of helping them,” said Dr. Ivashkiv.

In lupus, the immune system attacks the body’s own cells and tissue, especially the skin, joints, blood, heart, lungs and kidneys. It affects 1-1.5 million Americans and is a leading cause of kidney disease, stroke and cardiovascular disease in young women.

| newswise
Further information:
http://www.hss.edu
http://www.nature.com

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
28.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

High conductive foils enabling large area lighting

29.06.2017 | Power and Electrical Engineering

Designed proteins to treat muscular dystrophy

29.06.2017 | Life Sciences

Climate Fluctuations & Non-equilibrium Statistical Mechanics: An Interdisciplinary Dialog

29.06.2017 | Seminars Workshops

VideoLinks
B2B-VideoLinks
More VideoLinks >>>