Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Denver physician patents minimally invasive technology for hairtransplantation surgery

06.10.2004


James A. Harris, M.D., of the Hair Sciences Center of Colorado has invented and patented a new minimally invasive technology which will revolutionize the field of hair transplantation surgery. The new system utilizes an instrument called the Harris SAFE Scribe -- a small, self-contained device -- to isolate, extract and transplant single follicular units of hair without the trauma associated with other types of hair transplantation surgery.

According to Dr. Harris, a head and neck/facial plastic surgeon whose practice is limited solely to medical and surgical hair restoration, this breakthrough technology will benefit both transplant surgeons and patients.The Harris SAFE (Surgically Advanced Follicular Extraction) System will dramatically improve the field of hair restoration, making the surgery more accessible, more efficient and more affordable for the millions of men and women who are candidates for hair transplantation surgery. A less invasive surgical option, the Harris SAFE System also minimizes the pain, healing time and scarring associated with hair transplantation while leaving patients with the most natural results possible.

According to Dr. Harris, most hair transplant surgeons perform an invasive surgical procedure that requires the surgeon to surgically remove strips of scalp from the sides or back of the head, resulting in a linear scar and a lengthy healing time. A newer, less invasive technique called Follicular Unit Extraction (FUE) uses a small instrument to remove single follicular units of hair. Although much less invasive than traditional donor harvesting, FUE can be time consuming, potentially damaging to hair follicles, expensive and is only appropriate for a small percentage of patients.



"With traditional FUE, I found that only about 30 to 40 percent of patients were candidates," explained Dr. Harris. "While the procedure was not effective for most patients, especially African-Americans or gray-haired patients, the Harris SAFE System improves upon traditional FUE, working for virtually 100 percent of patients."

In addition to allowing virtually all patients the option of hair transplantation, the Harris SAFE System is extremely efficient. According to Dr. Harris, surgeons who use the Harris SAFE System can transplant up to several thousand grafts a day, compared to 300 to 400 per day using traditional FUE. "Because the Harris SAFE System is so efficient, eventually the price of hair transplantation should become more affordable," explained Dr. Harris.

"While the Harris SAFE System is labor intensive for the physician, it does not require a large surgical team or lots of expensive medical equipment. Early trials show the Harris SAFE Scribe is very easy to use."

According to Dr. Harris, while traditional FUE costs about 50 percent more than a normal transplant, the efficiency of the Harris SAFE System should drive this cost down, making the cost comparable to that of a standard transplant.

"Studies show that the SAFE System is very effective," explained Dr. Harris. "I have tested the SAFE System on 37 patients and have found that transection rates (the damage to hair follicles) average 5.6 percent. This is equal to or better than transection rates for traditional hair transplant surgery which average less than eight percent and transection rates for FUE, which in my experience can be up to 20 percent. "

Tammy Funk | EurekAlert!
Further information:
http://www.hsccolorado.com

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>