Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Denver physician patents minimally invasive technology for hairtransplantation surgery

06.10.2004


James A. Harris, M.D., of the Hair Sciences Center of Colorado has invented and patented a new minimally invasive technology which will revolutionize the field of hair transplantation surgery. The new system utilizes an instrument called the Harris SAFE Scribe -- a small, self-contained device -- to isolate, extract and transplant single follicular units of hair without the trauma associated with other types of hair transplantation surgery.

According to Dr. Harris, a head and neck/facial plastic surgeon whose practice is limited solely to medical and surgical hair restoration, this breakthrough technology will benefit both transplant surgeons and patients.The Harris SAFE (Surgically Advanced Follicular Extraction) System will dramatically improve the field of hair restoration, making the surgery more accessible, more efficient and more affordable for the millions of men and women who are candidates for hair transplantation surgery. A less invasive surgical option, the Harris SAFE System also minimizes the pain, healing time and scarring associated with hair transplantation while leaving patients with the most natural results possible.

According to Dr. Harris, most hair transplant surgeons perform an invasive surgical procedure that requires the surgeon to surgically remove strips of scalp from the sides or back of the head, resulting in a linear scar and a lengthy healing time. A newer, less invasive technique called Follicular Unit Extraction (FUE) uses a small instrument to remove single follicular units of hair. Although much less invasive than traditional donor harvesting, FUE can be time consuming, potentially damaging to hair follicles, expensive and is only appropriate for a small percentage of patients.



"With traditional FUE, I found that only about 30 to 40 percent of patients were candidates," explained Dr. Harris. "While the procedure was not effective for most patients, especially African-Americans or gray-haired patients, the Harris SAFE System improves upon traditional FUE, working for virtually 100 percent of patients."

In addition to allowing virtually all patients the option of hair transplantation, the Harris SAFE System is extremely efficient. According to Dr. Harris, surgeons who use the Harris SAFE System can transplant up to several thousand grafts a day, compared to 300 to 400 per day using traditional FUE. "Because the Harris SAFE System is so efficient, eventually the price of hair transplantation should become more affordable," explained Dr. Harris.

"While the Harris SAFE System is labor intensive for the physician, it does not require a large surgical team or lots of expensive medical equipment. Early trials show the Harris SAFE Scribe is very easy to use."

According to Dr. Harris, while traditional FUE costs about 50 percent more than a normal transplant, the efficiency of the Harris SAFE System should drive this cost down, making the cost comparable to that of a standard transplant.

"Studies show that the SAFE System is very effective," explained Dr. Harris. "I have tested the SAFE System on 37 patients and have found that transection rates (the damage to hair follicles) average 5.6 percent. This is equal to or better than transection rates for traditional hair transplant surgery which average less than eight percent and transection rates for FUE, which in my experience can be up to 20 percent. "

Tammy Funk | EurekAlert!
Further information:
http://www.hsccolorado.com

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>