Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Denver physician patents minimally invasive technology for hairtransplantation surgery

06.10.2004


James A. Harris, M.D., of the Hair Sciences Center of Colorado has invented and patented a new minimally invasive technology which will revolutionize the field of hair transplantation surgery. The new system utilizes an instrument called the Harris SAFE Scribe -- a small, self-contained device -- to isolate, extract and transplant single follicular units of hair without the trauma associated with other types of hair transplantation surgery.

According to Dr. Harris, a head and neck/facial plastic surgeon whose practice is limited solely to medical and surgical hair restoration, this breakthrough technology will benefit both transplant surgeons and patients.The Harris SAFE (Surgically Advanced Follicular Extraction) System will dramatically improve the field of hair restoration, making the surgery more accessible, more efficient and more affordable for the millions of men and women who are candidates for hair transplantation surgery. A less invasive surgical option, the Harris SAFE System also minimizes the pain, healing time and scarring associated with hair transplantation while leaving patients with the most natural results possible.

According to Dr. Harris, most hair transplant surgeons perform an invasive surgical procedure that requires the surgeon to surgically remove strips of scalp from the sides or back of the head, resulting in a linear scar and a lengthy healing time. A newer, less invasive technique called Follicular Unit Extraction (FUE) uses a small instrument to remove single follicular units of hair. Although much less invasive than traditional donor harvesting, FUE can be time consuming, potentially damaging to hair follicles, expensive and is only appropriate for a small percentage of patients.



"With traditional FUE, I found that only about 30 to 40 percent of patients were candidates," explained Dr. Harris. "While the procedure was not effective for most patients, especially African-Americans or gray-haired patients, the Harris SAFE System improves upon traditional FUE, working for virtually 100 percent of patients."

In addition to allowing virtually all patients the option of hair transplantation, the Harris SAFE System is extremely efficient. According to Dr. Harris, surgeons who use the Harris SAFE System can transplant up to several thousand grafts a day, compared to 300 to 400 per day using traditional FUE. "Because the Harris SAFE System is so efficient, eventually the price of hair transplantation should become more affordable," explained Dr. Harris.

"While the Harris SAFE System is labor intensive for the physician, it does not require a large surgical team or lots of expensive medical equipment. Early trials show the Harris SAFE Scribe is very easy to use."

According to Dr. Harris, while traditional FUE costs about 50 percent more than a normal transplant, the efficiency of the Harris SAFE System should drive this cost down, making the cost comparable to that of a standard transplant.

"Studies show that the SAFE System is very effective," explained Dr. Harris. "I have tested the SAFE System on 37 patients and have found that transection rates (the damage to hair follicles) average 5.6 percent. This is equal to or better than transection rates for traditional hair transplant surgery which average less than eight percent and transection rates for FUE, which in my experience can be up to 20 percent. "

Tammy Funk | EurekAlert!
Further information:
http://www.hsccolorado.com

More articles from Health and Medicine:

nachricht Malaria Already Endemic in the Mediterranean by the Roman Period
27.07.2017 | Universität Zürich

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>