Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique for thyroid cancer therapy eliminates many side effects

20.09.2004


Differentiated thyroid cancer, the most common form of thyroid cancer, is one of the success stories in the war on cancer. Since the advent of radioiodine therapy, it has been considered one of the most curable cancers. On the downside, current treatment involves taking patients off their thyroid medication. This can lead to serious side effects including symptoms of hypothyroidism, an unbalanced metabolic state that can induce fatigue, depression, and other unpleasant conditions.



Bart de Keizer, MD, and a team from the University Medical Center in Utrecht, The Netherlands, and Ghent University Hospital, Belgium, reported in the September issue of The Journal of Nuclear Medicine, on a new technique that allows patients to maintain their normal course of thyroid medication prior to and during radioiodine therapy. The new technique avoids the problems of hypothyroidism, and levels of radiation in the blood and bone marrow remain well below the accepted safety thresholds during therapy.

Currently, thyroid cancer patients who have had their thyroid removed are treated with radioactive iodine, which effectively zeros in on and kills any remaining cancerous thyroid cells. But prior to radioiodine treatment, the patient must be taken off thyroid hormone replacement medication for up to 6 weeks. The withdrawal of thyroid medication signals the body to produce thyroid stimulating hormone (THS). TSH causes any remaining or metastasized thyroid cells to quickly absorb the radioactive iodine when it is administered, in effect forcing the cancerous cells to absorb lethal radioactive molecules that are largely ignored by other cells in the body.


By using a genetically engineered version of the natural hormone (recombinant human thyroid stimulating hormone [rhTSH]) instead of thyroid medication withdrawal to stimulate the cancerous cells to quickly take up the radioactive iodine, the research team in The Netherlands and Belgium found that the problems of hypothyroidism can be avoided. This new technique may also increase the safety of radioiodine treatment and may allow a higher, more effective dose of radioiodine to be used when needed. That’s because when the body is not in a state of hypothyroidism, it can more efficiently process and excrete any radioiodine that hasn’t been absorbed.

The study, which involved 14 patients and 17 treatments, showed that treatment with rhTSH was well tolerated. None of the patients showed blood toxicity, and no bone marrow-related side effects were noted. Blood and bone marrow are the tissues most sensitive to radiation. As expected, none of the patients showed symptoms of hypothyroidism during or following treatment.

According to Dr. de Keizer, "Using rhTSH before administering radioiodine treatments resulted in no clinically relevant side effects. Therefore, although further testing needs to be done, our findings imply this treatment should improve efficacy while preserving safety and tolerability of treatment."

Ann Coleman | EurekAlert!
Further information:
http://www.snm.org
http://jnm.snmjournals.org

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>