Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique for thyroid cancer therapy eliminates many side effects

20.09.2004


Differentiated thyroid cancer, the most common form of thyroid cancer, is one of the success stories in the war on cancer. Since the advent of radioiodine therapy, it has been considered one of the most curable cancers. On the downside, current treatment involves taking patients off their thyroid medication. This can lead to serious side effects including symptoms of hypothyroidism, an unbalanced metabolic state that can induce fatigue, depression, and other unpleasant conditions.



Bart de Keizer, MD, and a team from the University Medical Center in Utrecht, The Netherlands, and Ghent University Hospital, Belgium, reported in the September issue of The Journal of Nuclear Medicine, on a new technique that allows patients to maintain their normal course of thyroid medication prior to and during radioiodine therapy. The new technique avoids the problems of hypothyroidism, and levels of radiation in the blood and bone marrow remain well below the accepted safety thresholds during therapy.

Currently, thyroid cancer patients who have had their thyroid removed are treated with radioactive iodine, which effectively zeros in on and kills any remaining cancerous thyroid cells. But prior to radioiodine treatment, the patient must be taken off thyroid hormone replacement medication for up to 6 weeks. The withdrawal of thyroid medication signals the body to produce thyroid stimulating hormone (THS). TSH causes any remaining or metastasized thyroid cells to quickly absorb the radioactive iodine when it is administered, in effect forcing the cancerous cells to absorb lethal radioactive molecules that are largely ignored by other cells in the body.


By using a genetically engineered version of the natural hormone (recombinant human thyroid stimulating hormone [rhTSH]) instead of thyroid medication withdrawal to stimulate the cancerous cells to quickly take up the radioactive iodine, the research team in The Netherlands and Belgium found that the problems of hypothyroidism can be avoided. This new technique may also increase the safety of radioiodine treatment and may allow a higher, more effective dose of radioiodine to be used when needed. That’s because when the body is not in a state of hypothyroidism, it can more efficiently process and excrete any radioiodine that hasn’t been absorbed.

The study, which involved 14 patients and 17 treatments, showed that treatment with rhTSH was well tolerated. None of the patients showed blood toxicity, and no bone marrow-related side effects were noted. Blood and bone marrow are the tissues most sensitive to radiation. As expected, none of the patients showed symptoms of hypothyroidism during or following treatment.

According to Dr. de Keizer, "Using rhTSH before administering radioiodine treatments resulted in no clinically relevant side effects. Therefore, although further testing needs to be done, our findings imply this treatment should improve efficacy while preserving safety and tolerability of treatment."

Ann Coleman | EurekAlert!
Further information:
http://www.snm.org
http://jnm.snmjournals.org

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>