Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The future of HIV therapeutics is brightening

30.08.2004


Nature Immunology commentary highlights promising advances in the field Recent discoveries about the way that HIV infects cells are propelling the development of a broad spectrum of promising new antiviral drugs, according to an invited commentary on the topic in the current issue of Nature Immunology (August 27, 2004).

The assessment is made by Gladstone Institute of Virology and Immunology (GIVI) Director Warner Greene, MD, PhD, who also serves as professor of medicine, microbiology and immunology at the University of California, San Francisco.

In the piece, Greene points out that basic research on HIV, a relatively simple pathogen with only nine genes encoding 15 proteins, are leading to compelling new therapies that deny the initial entry of HIV into its cellular host. In addition, fast-moving research of naturally occurring factors with potent antiviral properties is opening the way for future development of an entirely new class of anti-HIV drugs.



New agents that block the first step in HIV’s life cycle, the entry of the HIV virion (a single virus particle) into host CD4 T-cells, are quickly moving down the drug development pipeline. Chief among these therapeutics are drugs known as chemokine receptor antagonists that interfere with HIV’s ability to bind to CCR5, one of two key surface receptors needed for the virus to penetrate the cell. Although these HIV co-receptors were identified only seven years ago, basic studies performed by both GIVI investigators and scientists around the world have helped accelerate clinical development of CCR5 antagonists as a new class of anti-HIV drugs. Several major pharmaceutical companies are now racing to the finishing line.

These advances address but one of the three steps required for successful entry of the HIV virus. The other two steps involve the attachment of HIV virions to surface CD4 receptors and the final fusion of virions to target cells. These steps are also being targeted with new antiviral drugs. Combinations of inhibitors acting at each of the three steps in the viral entry sequence could soon form a new "triple cocktail" therapy for HIV-infected patients.

Prospects in the longer term are also bright, with the recent discovery of natural antiviral factors that are very active against specific forms of HIV. "The single most exciting new area of HIV basic research with strong therapeutic implications involves a host-encoded antiviral factor, APOBEC3G," explains Greene. "We all produce this factor. It’s quite potent, and it can halt the growth of HIV dead in its tracks, provided the virus lacks its Vif, or viral infectivity factor, gene."

HIV attacks APOBEC3G through its Vif protein. GIVI scientists were the first to show that Vif not only targets intracellular APOBEC3G for accelerated destruction, but also impairs new production of this antiviral factor. Vif’s combined effects effectively overcome the antiviral action of APOBEC3G.

The fact that Vif must bind to APOBEC3G and recruit enzymes triggering APOBEC3G degradation provides an exciting window of opportunity for future drug development. The goal is to block the assembly or ensuing action of Vif on APOBEC3G, thereby preserving intracellular expression of APOBEC3G. GIVI scientists are now launching a search for small molecules that display these properties. If these molecules can be identified and successfully developed into drugs, they would unleash potent antiviral effects of APOBEC3G, even in the presence of Vif. "HIV biologists agree that the Vif-APOBEC3G axis forms the single most promising drug target since the discovery of chemokine receptors," explains Greene.

While the future of HIV therapeutics is brightening, it is essential that these drugs be made available in such areas of the world as Africa and Asia, where the virus continues to spread unchecked, concludes Greene. "Such an effort is required if we are to blunt the expanding global HIV epidemic in a truly meaningful way," he explains. "This will require commitment and investment by the world community not only for the key drugs but also for the infrastructure and training required to ensure their effective use."

John Watson | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>