Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The future of HIV therapeutics is brightening

30.08.2004


Nature Immunology commentary highlights promising advances in the field Recent discoveries about the way that HIV infects cells are propelling the development of a broad spectrum of promising new antiviral drugs, according to an invited commentary on the topic in the current issue of Nature Immunology (August 27, 2004).

The assessment is made by Gladstone Institute of Virology and Immunology (GIVI) Director Warner Greene, MD, PhD, who also serves as professor of medicine, microbiology and immunology at the University of California, San Francisco.

In the piece, Greene points out that basic research on HIV, a relatively simple pathogen with only nine genes encoding 15 proteins, are leading to compelling new therapies that deny the initial entry of HIV into its cellular host. In addition, fast-moving research of naturally occurring factors with potent antiviral properties is opening the way for future development of an entirely new class of anti-HIV drugs.



New agents that block the first step in HIV’s life cycle, the entry of the HIV virion (a single virus particle) into host CD4 T-cells, are quickly moving down the drug development pipeline. Chief among these therapeutics are drugs known as chemokine receptor antagonists that interfere with HIV’s ability to bind to CCR5, one of two key surface receptors needed for the virus to penetrate the cell. Although these HIV co-receptors were identified only seven years ago, basic studies performed by both GIVI investigators and scientists around the world have helped accelerate clinical development of CCR5 antagonists as a new class of anti-HIV drugs. Several major pharmaceutical companies are now racing to the finishing line.

These advances address but one of the three steps required for successful entry of the HIV virus. The other two steps involve the attachment of HIV virions to surface CD4 receptors and the final fusion of virions to target cells. These steps are also being targeted with new antiviral drugs. Combinations of inhibitors acting at each of the three steps in the viral entry sequence could soon form a new "triple cocktail" therapy for HIV-infected patients.

Prospects in the longer term are also bright, with the recent discovery of natural antiviral factors that are very active against specific forms of HIV. "The single most exciting new area of HIV basic research with strong therapeutic implications involves a host-encoded antiviral factor, APOBEC3G," explains Greene. "We all produce this factor. It’s quite potent, and it can halt the growth of HIV dead in its tracks, provided the virus lacks its Vif, or viral infectivity factor, gene."

HIV attacks APOBEC3G through its Vif protein. GIVI scientists were the first to show that Vif not only targets intracellular APOBEC3G for accelerated destruction, but also impairs new production of this antiviral factor. Vif’s combined effects effectively overcome the antiviral action of APOBEC3G.

The fact that Vif must bind to APOBEC3G and recruit enzymes triggering APOBEC3G degradation provides an exciting window of opportunity for future drug development. The goal is to block the assembly or ensuing action of Vif on APOBEC3G, thereby preserving intracellular expression of APOBEC3G. GIVI scientists are now launching a search for small molecules that display these properties. If these molecules can be identified and successfully developed into drugs, they would unleash potent antiviral effects of APOBEC3G, even in the presence of Vif. "HIV biologists agree that the Vif-APOBEC3G axis forms the single most promising drug target since the discovery of chemokine receptors," explains Greene.

While the future of HIV therapeutics is brightening, it is essential that these drugs be made available in such areas of the world as Africa and Asia, where the virus continues to spread unchecked, concludes Greene. "Such an effort is required if we are to blunt the expanding global HIV epidemic in a truly meaningful way," he explains. "This will require commitment and investment by the world community not only for the key drugs but also for the infrastructure and training required to ensure their effective use."

John Watson | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>