Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Compounds Show Promise in Fighting Malaria and Cancer

25.08.2004


Using an ancient Chinese folk remedy as a model, researchers at The Johns Hopkins University in Baltimore have designed several new compounds that, in early testing, promise to be both safer and more effective in fighting malaria and some forms of cancer than the current “gold standard” drug treatments.

Scientists will announce their successful results in late August at the American Chemical Society’s annual summer meeting, held this year in Philadelphia. Some of the results also appeared in the January 2004 issue of the Journal of Medicinal Chemistry. “Preliminary data show that our laboratory-synthesized compounds have a therapeutic index – the measure of a drug’s safety and efficacy – that is better, in some cases, many times better, in rodents than the drugs currently considered the gold standard for chemotherapy of both malaria and prostate cancer,” said Gary Posner, Scowe Professor of Chemistry in the Krieger School of Arts and Sciences at Johns Hopkins. “These results are preliminary, but exciting, and certainly worth pursuing.”

Malaria afflicts between 300 million and 500 million people a year, killing between 1.5 million and 3 million of them – mostly children. Spread by female mosquitos feeding on human blood, the most commonly fatal strain of the malaria parasite began showing formidable resistance to current treatments decades ago, making the development of new and more effective drugs a worldwide priority.



With support from the National Institutes of Health since 1994, Posner’s research team, which also includes Theresa Shapiro, professor of clinical pharmacology at the Johns Hopkins School of Medicine, tackled that challenge by designing a series of compounds called trioxanes. These compounds are aimed at mimicking the mechanism of action of artemisinin, the active agent in the Artemisia annua plant, which has been used in China as an herbal remedy for malaria and other fevers for thousands of years.

Posner’s research and that of other laboratories revealed that the peroxide (oxygen-oxygen) unit within artemisinin and within other antimalarial trioxane drugs causes the malaria parasites to self-destruct. “We know that the malaria parasites digest hemoglobin in order to get nutrients, and in the process they release heme,” Posner explained. “When the heme encounters the peroxide bond, a chemical reaction occurs. Powerful chemical species such as carbon-free radicals and oxidizing agents are produced, harming and eventually killing the parasites.”

In the laboratory, several of the Posner trioxane compounds were compared against sodium artesunate – the gold standard for malaria treatment – in rodents. Administered intravenously, two of the new compounds outperformed the gold standard. “One was six or seven times better, and the other was three or four times more effective, which is substantial,” Posner said. “What’s more, when the trioxanes were administered orally, it was found that one of ours is four times more effective. That’s significant.”

Lab testing also revealed that at least one of the trioxane compounds – known as compound 7 – seems to be even safer than sodium artesunate. Testing of the Johns Hopkins trioxanes in rodent models for human prostate cancer in collaboration with the Roswell Park Cancer Institute in Buffalo, N.Y., was equally encouraging to the researchers, who are promoting the compounds as dual-use drug candidates.

In that laboratory, researchers pitted the potency of the trioxane compounds against two gold standard anticancer drugs, Gemzar and Adriamycin. They found that while trioxane compound 6 was comparable to the cancer-fighting action of Adriamycin, compound 5 appears to be nearly three times more powerful than that drug. “Our learning from this is that trioxane dimers 5 and 6, and especially 6, are exciting not just for their antimalarial potential, but also for their anticancer potential,” Posner said.

| newswise
Further information:
http://www.jhu.edu

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>