Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Compounds Show Promise in Fighting Malaria and Cancer

25.08.2004


Using an ancient Chinese folk remedy as a model, researchers at The Johns Hopkins University in Baltimore have designed several new compounds that, in early testing, promise to be both safer and more effective in fighting malaria and some forms of cancer than the current “gold standard” drug treatments.

Scientists will announce their successful results in late August at the American Chemical Society’s annual summer meeting, held this year in Philadelphia. Some of the results also appeared in the January 2004 issue of the Journal of Medicinal Chemistry. “Preliminary data show that our laboratory-synthesized compounds have a therapeutic index – the measure of a drug’s safety and efficacy – that is better, in some cases, many times better, in rodents than the drugs currently considered the gold standard for chemotherapy of both malaria and prostate cancer,” said Gary Posner, Scowe Professor of Chemistry in the Krieger School of Arts and Sciences at Johns Hopkins. “These results are preliminary, but exciting, and certainly worth pursuing.”

Malaria afflicts between 300 million and 500 million people a year, killing between 1.5 million and 3 million of them – mostly children. Spread by female mosquitos feeding on human blood, the most commonly fatal strain of the malaria parasite began showing formidable resistance to current treatments decades ago, making the development of new and more effective drugs a worldwide priority.



With support from the National Institutes of Health since 1994, Posner’s research team, which also includes Theresa Shapiro, professor of clinical pharmacology at the Johns Hopkins School of Medicine, tackled that challenge by designing a series of compounds called trioxanes. These compounds are aimed at mimicking the mechanism of action of artemisinin, the active agent in the Artemisia annua plant, which has been used in China as an herbal remedy for malaria and other fevers for thousands of years.

Posner’s research and that of other laboratories revealed that the peroxide (oxygen-oxygen) unit within artemisinin and within other antimalarial trioxane drugs causes the malaria parasites to self-destruct. “We know that the malaria parasites digest hemoglobin in order to get nutrients, and in the process they release heme,” Posner explained. “When the heme encounters the peroxide bond, a chemical reaction occurs. Powerful chemical species such as carbon-free radicals and oxidizing agents are produced, harming and eventually killing the parasites.”

In the laboratory, several of the Posner trioxane compounds were compared against sodium artesunate – the gold standard for malaria treatment – in rodents. Administered intravenously, two of the new compounds outperformed the gold standard. “One was six or seven times better, and the other was three or four times more effective, which is substantial,” Posner said. “What’s more, when the trioxanes were administered orally, it was found that one of ours is four times more effective. That’s significant.”

Lab testing also revealed that at least one of the trioxane compounds – known as compound 7 – seems to be even safer than sodium artesunate. Testing of the Johns Hopkins trioxanes in rodent models for human prostate cancer in collaboration with the Roswell Park Cancer Institute in Buffalo, N.Y., was equally encouraging to the researchers, who are promoting the compounds as dual-use drug candidates.

In that laboratory, researchers pitted the potency of the trioxane compounds against two gold standard anticancer drugs, Gemzar and Adriamycin. They found that while trioxane compound 6 was comparable to the cancer-fighting action of Adriamycin, compound 5 appears to be nearly three times more powerful than that drug. “Our learning from this is that trioxane dimers 5 and 6, and especially 6, are exciting not just for their antimalarial potential, but also for their anticancer potential,” Posner said.

| newswise
Further information:
http://www.jhu.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>