Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New model can aid in understanding immune system diseases

18.08.2004


New Model Can Aid In Understanding Immune System Diseases Researchers trying to understand diseases and develop new treatments can’t always depend on existing tools or organisms to make discoveries; sometimes they first must create models of the problems they want to study.

Such is the case with Epstein-Barr, a common virus that is often harmless but likely contributes to malignancies and autoimmnune disease in people with compromised immunity. A University of Iowa team has engineered a mouse that provides new insights into the virus.

The animal model has implications for advancing treatments for patients with AIDS or an organ transplant who get a certain type of cancer, and for people with immune system diseases such as lupus, arthritis and multiple sclerosis. The study results appear in the August issue of the journal Immunity.



The advance builds on previous UI studies done in cell culture and provides researchers with a model that allows them to see biological functions related to Epstein-Barr within the context of a whole organism, said Gail Bishop, Ph.D., Distinguished Professor of Microbiology and Internal Medicine in the UI Roy J. and Lucille A. Carver College of Medicine and a research career scientist with the Department of Veterans Affairs (VA) Iowa City Health Care System.

"Mice cannot be infected with Epstein-Barr because they do not have the receptor for this virus. What we have done is express in the mouse the most important transforming protein that is involved in the virus in humans," said Bishop, who also is associate director for basic science research at the Holden Comprehensive Cancer Center at the UI.

The Epstein-Barr virus, a member of the of herpes virus family, infects most people by adulthood, then remains latent (inactivated) after an initial and usually symptomless infection. People who get the virus in their teens or early 20s may get mononucleosis. But for people with AIDS or who are on immunosuppressive drugs to prevent rejection of a donated organ, there is a risk that the activated virus will produce a viral protein called latent membrane protein 1 (LMP1), which in turn can cause B cell lymphoma, or tumors, Bishop said.

The new mouse model will help researchers study how LMP1 impacts specific organs or tissues. Previous UI studies helped show that this viral protein mimics a normal cellular process in humans. In that process, a protein called CD40 signals B cells (white blood cells) to divide and make antibodies against infection, then terminates the signal when the need for the immune response is gone. LMP1 also triggers B cell activation, but in contrast to CD40, fails to stop it at the appropriate time.

"The viral protein is an amazing mimic of the normal protein but, in a way, the viral protein does its functions too well," Bishop said. "The viral protein causes abnormal survival and activation of these B cells."

Lymph nodes all over the bodies of these mice are enlarged by excess B cells. In addition, there is increased production by the B cells of antibodies against normal cellular components. These antibodies are called auto-antibodies.

"In humans, these auto-antibodies work against components of one’s own body and are seen in other autoimmune diseases such as lupus, arthritis, diabetes and multiple sclerosis," Bishop explained.

The researchers found that mice with LMP1 made excess auto-antibodies. This means that the mice could serve as a model for understanding how to prevent this overproduction in humans, with implications for not only Epstein-Barr Virus but also autoimmune diseases.

"Epidemiological studies show a correlative link between acute Epstein-Barr virus and autoimmune diseases, particularly lupus and arthritis," Bishop said. "We’re wondering, ’Where does this link come from?’ If the viral protein causes B cells to be hyperactive, this might increase the propensity of the small number of autoreactive B cells, which we all have, to become hyperactivated."

The team also found that mice with LMP1 have certain problems with how cells are organized in the lymph nodes and spleen.

"Normally, when a person gets an infection or vaccination, they develop a memory response. As a result, you have a particular organization of cells and tissue -- called germinal centers -- in your lymph nodes, spleen and lining of the intestine. When we looked at germinal centers in the mouse, we could see this tissue organization was disrupted," Bishop said.

By studying this dysfunction in mice, the team hopes to learn why the normal cellular protein CD40, but not the viral mimic LMP1, is able to signal to organize the cells and tissues.

"There are chemical messengers that cells normally use to tell each other where and when to go, so we will use the ’mimic’ mice to see if some of these chemical messenger are altered when LMP1 is present," Bishop said.

The team has other projects planned. The mice used in the study either had only a gene that coded for the normal protein or only a gene that coded for the viral protein. The team will breed mice that have one copy of each gene. These models may reveal whether the normal protein can suppress the abnormal protein, a function which, if it exists, could be useful in the development of therapeutics.

In addition to Bishop, major collaborators on the projects included the two lead authors Laura Stunz, Ph.D., UI associate research scientist, and Lisa Busch, a UI doctoral candidate in molecular biology who has since graduated.

Becky Soglin | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>