Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare mutations can significantly increase risk factor for heart disease

17.08.2004


Certain rare gene mutations can contribute significantly to low levels of a beneficial form of cholesterol in the blood, researchers have found. Low levels of this cholesterol, known as high-density lipoprotein (HDL), are a major risk factor for heart disease.



Gene mutations previously known to affect HDL levels had small effects individually, and it was thought many such mutations needed to accumulate before HDL levels were significantly reduced. The new finding, however, demonstrates that mutations in a few genes can be sufficient to affect blood cholesterol levels. According to the researchers, the strategy used in this study can be generalized to analyze the role of rare variations in candidate genes in other clinically important complex human traits.

Led by Howard Hughes Medical Institute investigator Helen H. Hobbs, who is at the University of Texas Southwestern Medical Center at Dallas, the researchers published their findings in the August 6, 2004, issue of the journal Science. Hobbs’ colleagues from the University of Texas Southwestern and the University of Ottawa Heart Institute were coauthors on the paper.


HDL is important for preventing heart disease because it transports cholesterol in the blood back to the liver, leading to its removal from the body and preventing its buildup on artery walls. The level of HDL in the blood is a complex trait, influenced to varying degrees by many genes, as well as environmental and lifestyle factors such as diet and exercise.

Previously, researchers believed that the genetic component of this trait depended primarily on the cumulative effect of many common genetic variations, each of which influenced HDL levels in a small way. However, rare variations with stronger effects are also likely to be involved. "What we wanted to know," Hobbs said, "was how much do single gene defects with major effects contribute to complex traits?"

Although mutations with such a strong effect on overall HDL levels may be rare individually, the researchers said, collectively, mutations of this type might be common enough to contribute to the variation seen throughout the population.

To determine the influence of rare mutations, the scientists relied on data from individuals enrolled in a study run by Hobbs, known as the Dallas Heart Study. Hobbs and her colleagues designed the study in 1999 to examine the biological and social causes of ethnic disparities in cardiovascular disease. Through this study, they have collected extensive data and samples from approximately 3,000 multiethnic participants through health surveys, blood and urine samples, and imaging studies.

The usual approach to identifying relevant genes, Hobbs said, is for researchers to identify a mutation in individuals with low levels of HDL and look for the frequency of that mutation in the general population. In this study, however, the researchers increased the likelihood of detecting gene mutations that significantly influenced the final trait by focusing on individuals at the extreme ends of the spectrum of HDL levels. Using 128 subjects from the Dallas Heart Study, they compared the genes of those with HDL levels in the lowest five percent of the population to those whose HDL levels fell in the top five percent.

"The value of the approach," Hobbs said, "is that you not only get the common variations, but you can address whether individual rare genotypes also contribute to the phenotype."

In their search for genetic differences between the two groups, the researchers focused on three genes that, when defective, had been implicated in rare forms of HDL deficiency. These were genes coding for proteins that play critical roles in cholesterol metabolism and transport, known as apoplipoprotein A1 (APOA1), adenosine triphosphate binding cassette transporter A1 (ABCA1), and lecithin cholesterol acyltransferase (LCAT). Individuals with two defective copies of any of these genes have virtually no HDL circulating in their blood, whereas individuals with only one functional copy of the gene have about half the normal plasma level of HDL.

The researchers sequenced the three genes and looked for changes in the DNA that would alter the resulting protein. Such variations were found in 16 percent of the individuals with low HDL levels, whereas they occurred in only two percent of those with high HDL.

To ensure that these differences were specific to mutations that might affect HDL levels and exclude the possibility that mutations in general were occurring more frequently in one group, the researchers also compared the frequency of non-synonymous sequence variations – those that exist only at the DNA level and would not affect the protein. They found these to be similar in the groups with high and low HDL levels.

Additionally, they confirmed their results in an independent population of patients and examined cells from the individuals in that analysis to show that sequence variants in the low-HDL group were functionally important.

According to the researchers, the results of their study provide direct evidence that rare variations in DNA significantly affect levels of HDL in the blood. A better understanding of the DNA sequence variations that contribute to low levels of HDL will not only help researchers understand the disease, but, with further study, may also help in the identification of new treatment targets and diagnostic tests.

This new understanding of the role of rare genes is just one piece of the complex network of factors that shape heart disease risk, but according to Hobbs, the Dallas Heart Study provides an invaluable means to further examine those factors and their interplay. "We’ve developed a carefully phenotyped population, with information not just on lipoprotein levels, but also drugs, weight, family history, etcetera," she said, "so we can now go back and look at how those things together may have shaped these individuals’ risks."

Jennifer Michalowski | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>