Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rare mutations can significantly increase risk factor for heart disease


Certain rare gene mutations can contribute significantly to low levels of a beneficial form of cholesterol in the blood, researchers have found. Low levels of this cholesterol, known as high-density lipoprotein (HDL), are a major risk factor for heart disease.

Gene mutations previously known to affect HDL levels had small effects individually, and it was thought many such mutations needed to accumulate before HDL levels were significantly reduced. The new finding, however, demonstrates that mutations in a few genes can be sufficient to affect blood cholesterol levels. According to the researchers, the strategy used in this study can be generalized to analyze the role of rare variations in candidate genes in other clinically important complex human traits.

Led by Howard Hughes Medical Institute investigator Helen H. Hobbs, who is at the University of Texas Southwestern Medical Center at Dallas, the researchers published their findings in the August 6, 2004, issue of the journal Science. Hobbs’ colleagues from the University of Texas Southwestern and the University of Ottawa Heart Institute were coauthors on the paper.

HDL is important for preventing heart disease because it transports cholesterol in the blood back to the liver, leading to its removal from the body and preventing its buildup on artery walls. The level of HDL in the blood is a complex trait, influenced to varying degrees by many genes, as well as environmental and lifestyle factors such as diet and exercise.

Previously, researchers believed that the genetic component of this trait depended primarily on the cumulative effect of many common genetic variations, each of which influenced HDL levels in a small way. However, rare variations with stronger effects are also likely to be involved. "What we wanted to know," Hobbs said, "was how much do single gene defects with major effects contribute to complex traits?"

Although mutations with such a strong effect on overall HDL levels may be rare individually, the researchers said, collectively, mutations of this type might be common enough to contribute to the variation seen throughout the population.

To determine the influence of rare mutations, the scientists relied on data from individuals enrolled in a study run by Hobbs, known as the Dallas Heart Study. Hobbs and her colleagues designed the study in 1999 to examine the biological and social causes of ethnic disparities in cardiovascular disease. Through this study, they have collected extensive data and samples from approximately 3,000 multiethnic participants through health surveys, blood and urine samples, and imaging studies.

The usual approach to identifying relevant genes, Hobbs said, is for researchers to identify a mutation in individuals with low levels of HDL and look for the frequency of that mutation in the general population. In this study, however, the researchers increased the likelihood of detecting gene mutations that significantly influenced the final trait by focusing on individuals at the extreme ends of the spectrum of HDL levels. Using 128 subjects from the Dallas Heart Study, they compared the genes of those with HDL levels in the lowest five percent of the population to those whose HDL levels fell in the top five percent.

"The value of the approach," Hobbs said, "is that you not only get the common variations, but you can address whether individual rare genotypes also contribute to the phenotype."

In their search for genetic differences between the two groups, the researchers focused on three genes that, when defective, had been implicated in rare forms of HDL deficiency. These were genes coding for proteins that play critical roles in cholesterol metabolism and transport, known as apoplipoprotein A1 (APOA1), adenosine triphosphate binding cassette transporter A1 (ABCA1), and lecithin cholesterol acyltransferase (LCAT). Individuals with two defective copies of any of these genes have virtually no HDL circulating in their blood, whereas individuals with only one functional copy of the gene have about half the normal plasma level of HDL.

The researchers sequenced the three genes and looked for changes in the DNA that would alter the resulting protein. Such variations were found in 16 percent of the individuals with low HDL levels, whereas they occurred in only two percent of those with high HDL.

To ensure that these differences were specific to mutations that might affect HDL levels and exclude the possibility that mutations in general were occurring more frequently in one group, the researchers also compared the frequency of non-synonymous sequence variations – those that exist only at the DNA level and would not affect the protein. They found these to be similar in the groups with high and low HDL levels.

Additionally, they confirmed their results in an independent population of patients and examined cells from the individuals in that analysis to show that sequence variants in the low-HDL group were functionally important.

According to the researchers, the results of their study provide direct evidence that rare variations in DNA significantly affect levels of HDL in the blood. A better understanding of the DNA sequence variations that contribute to low levels of HDL will not only help researchers understand the disease, but, with further study, may also help in the identification of new treatment targets and diagnostic tests.

This new understanding of the role of rare genes is just one piece of the complex network of factors that shape heart disease risk, but according to Hobbs, the Dallas Heart Study provides an invaluable means to further examine those factors and their interplay. "We’ve developed a carefully phenotyped population, with information not just on lipoprotein levels, but also drugs, weight, family history, etcetera," she said, "so we can now go back and look at how those things together may have shaped these individuals’ risks."

Jennifer Michalowski | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>