Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough In Treatment For Kidney Dialysis Patients

13.08.2004


A ground-breaking medical approach which could substantially improve the quality of life for over a million kidney dialysis patients, and bring huge savings to health services around the globe, is one step closer to becoming a reality, thanks to NESTA (the National Endowment of Science, Technology and the Arts) – the organisation that backs UK innovation.

NESTA has invested £95,000 in a university spin-out, Veryan Medical Limited, based at London’s Imperial College, to further develop their ground-breaking approach. The company has been financed to date by NPI Ventures Limited and Imperial College Innovations.

Veryan are dedicated to developing a number of novel medical devices to address urgent, unmet medical needs in the field of vascular disease, the greatest cause of death in the modern world. Their inventions are designed to recreate the natural swirling fluid flow of the body and prevent the development of disease. The first device to be tested in clinical human trials will be the SwirlGraft™ vascular access graft.



Currently, there are over one million people requiring regular connection to a kidney dialysis machine in order to sustain their lives. A majority of these patients have a synthetic vessel, called a vascular access graft, inserted beneath the skin to facilitate regular hypodermic puncturing and to maximize blood-flow to the dialysis machine. However, these grafts typically develop a potentially lethal disease, called ‘intimal hyperplasia’, which can block the downstream junction with the natural vessel in just a few months. This results in most grafts requiring replacement within a year, and many patients require remedial surgery up to three times a year.

SwirlGraft™ has the potential to be the most effective solution to this problem. By ensuring appropriate swirling blood flow through the dialysis graft and into the downstream vein, it stands to greatly reduce the disease by eliminating the stagnant flow regions where intimal hyperplasia proliferates.

The SwirlGraft™ device has been developed by Professor Colin Caro at Imperial College, and comes on the back of research dating back to 1966. Professor Caro is considered to be a world expert on the links between the physics of blood flow and disease. Veryan Medical is headed up by Philip Birch who brings substantial expertise of building and funding early stage healthcare companies.

NESTA’s investment will be used to develop the SwirlGraft™ device from the current experimental proof of concept through to clinical proof of concept. The trials will be based in the Netherlands and will involve 25 dialysis patients fitted with SwirlGraft™ for their vascular access, monitored for a year.

Mark White, NESTA’s Invention and Innovation Director, said: “We are delighted to be investing in a product which meets an urgent need for improved clinical performance, as well as bringing huge benefits to dialysis patients from around the world.”

| alfa
Further information:
http://www.nesta.org.uk

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>