Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough In Treatment For Kidney Dialysis Patients

13.08.2004


A ground-breaking medical approach which could substantially improve the quality of life for over a million kidney dialysis patients, and bring huge savings to health services around the globe, is one step closer to becoming a reality, thanks to NESTA (the National Endowment of Science, Technology and the Arts) – the organisation that backs UK innovation.

NESTA has invested £95,000 in a university spin-out, Veryan Medical Limited, based at London’s Imperial College, to further develop their ground-breaking approach. The company has been financed to date by NPI Ventures Limited and Imperial College Innovations.

Veryan are dedicated to developing a number of novel medical devices to address urgent, unmet medical needs in the field of vascular disease, the greatest cause of death in the modern world. Their inventions are designed to recreate the natural swirling fluid flow of the body and prevent the development of disease. The first device to be tested in clinical human trials will be the SwirlGraft™ vascular access graft.



Currently, there are over one million people requiring regular connection to a kidney dialysis machine in order to sustain their lives. A majority of these patients have a synthetic vessel, called a vascular access graft, inserted beneath the skin to facilitate regular hypodermic puncturing and to maximize blood-flow to the dialysis machine. However, these grafts typically develop a potentially lethal disease, called ‘intimal hyperplasia’, which can block the downstream junction with the natural vessel in just a few months. This results in most grafts requiring replacement within a year, and many patients require remedial surgery up to three times a year.

SwirlGraft™ has the potential to be the most effective solution to this problem. By ensuring appropriate swirling blood flow through the dialysis graft and into the downstream vein, it stands to greatly reduce the disease by eliminating the stagnant flow regions where intimal hyperplasia proliferates.

The SwirlGraft™ device has been developed by Professor Colin Caro at Imperial College, and comes on the back of research dating back to 1966. Professor Caro is considered to be a world expert on the links between the physics of blood flow and disease. Veryan Medical is headed up by Philip Birch who brings substantial expertise of building and funding early stage healthcare companies.

NESTA’s investment will be used to develop the SwirlGraft™ device from the current experimental proof of concept through to clinical proof of concept. The trials will be based in the Netherlands and will involve 25 dialysis patients fitted with SwirlGraft™ for their vascular access, monitored for a year.

Mark White, NESTA’s Invention and Innovation Director, said: “We are delighted to be investing in a product which meets an urgent need for improved clinical performance, as well as bringing huge benefits to dialysis patients from around the world.”

| alfa
Further information:
http://www.nesta.org.uk

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>