Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New glycan arrays discover autoimmunogenic activities of SARS-CoV: concern over monkey vaccine

02.08.2004


Carbohydrate microarray technology shows strength in exploring novel immunologic targets



Researchers in New York City and Guangzhou, China applied the rapidly-developing carbohydrate microarray technology to study an inactivated SARS-coronavirus (SARS-CoV) vaccine and discovered autoimmunogenic activity of this newly identified human viral pathogen.

Using glycan microarrays, the researchers characterized the carbohydrate binding activity of SARS-CoV neutralizing antibodies elicited by an inactivated SARS viral vaccine and found:


1.) An undesired autoantibody reactivity is present in SARS-CoV neutralization antibodies
2.) the autoimmune reactivity is directed toward the complex carbohydrate of an abundant human serum glycoprotein, ASOR (asialo-orosomucoid)
3.) lectin PHA-L is identified as a specific immunologic probe to detect this complex carbohydrate
4.) this lectin stains the SARS-CoV-infected cells specifically and intensively.

The authors said that based on these findings they "have sufficient immunologic evidence that a viral-expressed carbohydrate structure is responsible for the induction of the anti-ASOR autoimmunity in vaccinated animals. These observations raise concerns on human use of the whole virus-based SARS vaccine that is produced by the monkey Vero E6 cell."

They consider that it is too risky to introduce a whole-viral SARS vaccine to human subjects since its immunological property remains largely uncharacterized. They said: "It is necessary to eliminate the undesired autoimmunogenic activity of this preparation of inactivated SARS-CoV. It is possible to identify an alternative cell line or to genetically modify the Vero E6 cell line by altering its glycosylation pathway, thereby producing vaccines with enhanced efficacy without autoimmunogenic activity."

Wang and Lu note that the experimental approaches developed in their research are likely applicable for the immunologic characterization of other viral pathogens.

Research done at Columbia University and Sun Yat-sen University

The co-equal authors of the paper "Glycan arrays lead to the discovery of autoimmunogenic activities of SARS-CoV" are Denong Wang, who was head of the functional genomics division of Columbia University Genome Center, College of Physicians & Surgeons, New York, New York; and Jiahai Lu, Associate Professor at the School of Public Health at Sun Yat-sen University, Guangzhou, China.

Lu also is in charge of the SARS-CoV vaccine program for Guangdong Province.

Wang recently moved his carbohydrate microarray laboratory to the Departments of Genetics, Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, California.

The research was first published online in the American Physiological Society’s Articles in PresS May 25 and appears in the July 2004 issue of Physiological Genomics, one of 14 journals containing almost 4,000 articles annually, published by APS.

Experiments and results

In 2002, Wang’s laboratory developed a practical bioarray platform, which utilizes nitrocellulose-coated glass slides as substrate to immobilize carbohydrate antigens. This procedure is suitable for high-throughput construction of carbohydrate arrays using existing microarray spotting devices. His group reported that a range of carbohydrate-containing macromolecules of distinct structural configurations, including polysaccharides, natural glycoconjugates, and the mono- and oligosaccharides coupled to carrier molecules, are applicable for this bioarray platform.

Using this technology, Wang’s group constructed a glycan array to display a collection of carbohydrate antigens, including microbial and plant-derived polysaccharides, as well as cellular glycan complex carbohydrates. To extend the repertoire of diverse carbohydrate structures on an array, they especially included blood group substances A, B, O, Lewis, I, and i antigens, their precursors and structural derivatives that were fostered by the late Columbia Professor Elvin A. Kabat and others.

Wang and Lu believed that scanning the antibody "fingerprints" of immunized or infected subjects using a broad-range glycan array is a specific immunologic approach to exploring the evidence of viral expression of corresponding complex carbohydrates. With this novel experimental strategy, they characterized SARS-CoV neutralization antibodies and detected significant levels of IgG antibodies to a human serum glycoprotein ASOR in horse anti-SARS-CoV antibodies. However, there was no detectable antibody reactivity to agalacto-orosomucoid (AGOR), a derivative of ASOR, which differs from ASOR solely by the absence of the terminal galactosyl sugar residue.

Therefore, the researchers considered that the anti-ASOR antibody reactivity is likely specific for the sugar moieties of ASOR, and that the terminal galactose (Gal) contributes significantly to the carbohydrate binding reactivity. These "chip-hits" led the way to rapid identification of specific immunologic probes that were subsequently applied to determine whether SARS-CoV-infected monkey cells expresses antigenic structures that mimic the complex carbohydrates on human glycoprotein.

Question about autoimmune responses in SARS pathogenesis

Expression of ASOR-like complex carbohydrates by coronaviruses is previously unrecognized. ASOR is an abundant human serum glycoprotein and the ASOR-type complex carbohydrates are also expressed by other host glycoproteins. Thus the human immune system is generally non-responsive to these "self" carbohydrate structures. However, when similar sugar moieties are expressed by a viral glycoprotein, their cluster configuration could differ significantly from those displayed by a cellular glycan, thereby generating a novel "non-self" antigenic structure.

A documented example of such viral structure is an HIV-1 neutralization epitope recognized by a monoclonal antibody 2G12. As reported by D.A. Calarese and other scientists at Scripps Research Institute, this antibody is specific for a unique cluster of sugar chains displayed by the gp120 glycoprotein of HIV-1 and is able to neutralize a broad-range of HIV-1 isolates.

It is, therefore, important to examine whether naturally occurring SARS-CoV expresses the auto-immunogenic reactivities that are found in the monkey produced viruses. During a potential SARS epidemic spread, the viruses replicate within human cells. The authors pointed out that the species-associated variation in protein glycosylation might result in significant differences in sugar chain expression by the SARS viruses. To clarify whether "humanized" SARS viruses are auto-immunogenic to humans, the authors suggest investigation of the serum antibody profiles of SARS patients and vaccinated subjects using glycan arrays and other immunological tools.

Glycan arrays to exploring "sugar chain signatures" of infectious agents

Wang and Lu emphasize the importance of studying the antigenic carbohydrate structures of infectious agents. They believed that there are possibly two categories of immunologic targets for a given pathogen: microbe-specific carbohydrate structures and host-tissue cross-reactive sugar moieties. The former would be suitable for vaccination and or diagnosis of infectious diseases; the latter is critical for understanding of the biological relationship of host-microbes, as well as pathogenesis of an infection. The high-sensitivity and broad-range detection characteristics of glycan array technology make it a practical approach to exploring the "sugar chain signatures"of infectious agents, they note.

Wang and Lu said their SARS collaboration, although at an early stage, shows the strength of this new technology. This study will be extended to characterization of anti-SARS antibody responses of different animal species, including mouse, rat, rabbit, pig, horse, and monkey. They believe that characterization of anti-SARS-CoV antibody profiles of multiple animal species using glycan arrays would provide more information regarding the immunologic property of this vaccine.

They note that their study also provides clues to explore the possible roles of carbohydrate-mediated receptor-ligand interactions in SARS-CoV infection, especially in determining host-range and tissue-tropic characteristics of the virus. They urge collaborative efforts to elucidate the structure of sugar chains that are responsible for the observed autoimmunogenic activities of SARS-CoV.

In addition, they said that the experimental approaches developed in their research are likely applicable for the immunologic characterization of other viral pathogens.

Source: The research was first published online in the American Physiological Society’s Articles in PresS on May 25 and appears in the July 2004 issue of Physiological Genomics, one of 14 journals containing almost 4,000 articles annually, published by APS.

Mayer Resnick | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>