Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant Estrogens in Soy Do Not Increase Breast Cancer Risk

07.07.2004


Research in monkeys suggests that a diet high in the natural plant estrogens found in soy does not increase the risk of breast or uterine cancer in postmenopausal women.

“This is convincing evidence that at dietary levels, the estrogens found in soy do not stimulate cell growth and other markers for cancer risk,” said Charles E. Wood, D.V.M., lead researcher, from Wake Forest University Baptist Medical Center. “The findings should be especially interesting to women at high risk for breast cancer who take soy products.”

The research is reported in the current issue of The Journal of Clinical Endocrinology & Metabolism.



Wood said there has been much debate about whether high levels of dietary soy are safe for postmenopausal women. Soy products are sold as a natural alternative to traditional hormone therapy. The most common form of hormone therapy, estrogen plus a progestin, has been shown to increase risk of breast cancer.

Soy and some other plants contain estrogen-like compounds called isoflavones or phytoestrogens. These plant estrogens are thousands of times weaker than the estrogen produced by the body, but may be present in much higher concentrations in the blood. Evidence about their safety has been mixed. It is known that populations that typically consume diets high in soy have lower rates of breast cancer. On the other hand, some studies have shown that soy isoflavones can stimulate breast cancer cells grown in the laboratory.

“Evidence from observational studies in women indicates that soy intake may help prevent breast cancer,” said Wood. “But there has still been reluctance to conduct research studies in women because of concerns that isoflavones may stimulate breast cell growth and increase the risk of breast cancer.”

Wood and colleagues measured how a diet high in soy isofllavones affected markers for breast and uterine cancer risk in postmenopausal monkeys. The monkeys ate one of three diets for three years: soy that didn’t contain isoflavones, soy with the isoflavones intact, or soy without isoflavones, but with Premarin, or estrogen therapy, added.

The isoflavone group consumed the human equivalent of about 129 milligrams a day, more than most people would get in a soy-rich diet.

The researchers measured breast density, numbers of dividing breast and uterine cells, and levels of the estrogen produced by the body – all markers for cancer risk. Monkeys on the soy plus estrogen diet had increased levels of all markers, while monkeys that ate soy with isoflavones did not.

In fact, the monkeys eating soy with isoflavones had lower levels of the estrogen produced by the body. High levels of this estrogen are considered an important predictor of breast cancer risk in postmenopausal women.

“These findings suggest that high dietary levels of soy isoflavones do not increase markers for breast and uterine cancer risk in postmenopausal monkeys and may contribute to an estrogen profile associated with reduced breast cancer risk,” said the researchers.
Wood said it is important to note that the research addressed the effects of plant estrogens on normal breast tissue, and not in breast cancer.

“A big unanswered question is whether it is safe for breast cancer survivors to turn to soy,” he said.

Researchers are not certain how plant estrogens and the estrogen produced by the body, or given in pills, act together. One theory is that the plant estrogens bind to cells that have estrogen receptors, such as breast tissue, and block the effects of the other types of estrogen. Isoflavones may also help reduce the amount of active estrogen in the body.

To investigate these ideas, Wood and colleagues are currently looking at whether soy may block breast cell proliferation induced by estrogen therapy.

Other researchers involved the study included J. Mark Cline, Ph.D., D.V.M., Mary S. Anthony, Ph.D., Thomas C. Register, Ph.D., and Nancy D. Kock, Ph.D., D.V.M., all from Wake Forest Baptist.

The research was funded by grants from the National Institutes of Health.

| newswise
Further information:
http://www.wfubmc.edu

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>