Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EU ‘Newmood’ research investigating genetic links to treat depression with new drugs

29.06.2004


120 million people worldwide suffer from depression. An EU-funded research project launched recently will help to uncover the genetic factors linked to depression to develop new drug treatments. The Integrated Project, named NEWMOOD, has received €7.2 million in funding from the EU’s Sixth Research Framework Programme (FP6) and aims to identify genes involved in triggering depression. This will help researchers to develop new drugs over the next five years to treat it and improve understanding of its causes. The drugs are set to revolutionise antidepressant drugs, which have not changed much over the past 30 years. The project, co-ordinated by the University of Manchester (United Kingdom) involves partners from 13 laboratories in 10 European countries including Estonia, France, Germany, Hungary, Italy, the Netherlands, Poland, Slovenia and Spain.

“Depression is a widespread issue and represents a serious health problem in Europe. Everybody can feel sad. But depression is a severe and long-term problem where people feel hopeless and their professional and private life is hampered,” says European Research Commissioner Philippe Busquin. “Traditional drugs mainly target brain chemicals, and are only partially effective. By looking into the genetics of depression EU researchers can go to the very roots of the illness, and help prevent and cure it in innovative ways. European scientists working together can make a difference and achieve a quantum leap in the fight against depression”.

Feeling blue



Depression, which is marked by symptoms of reduced interest and pleasure, weight and appetite changes, agitation and fatigue, is believed to be caused by genetic and environmental factors. Chronic stress, such as long term illness or bereavement, can trigger depression in those genetically predisposed to the condition. Counselling is often used alongside drug treatment, but the NEWMOOD research hopes to find more effective drug treatments by identifying genes affecting depression in mice and rats, and later in humans.

New drugs to take effect sooner

Currently, most antidepressants work by boosting levels of serotonin in the brain, a chemical that allows nerve cells in the brain to communicate with one another. However, such treatments can take weeks to have an effect and only work in around 50% of patients. It is hoped the new drugs will be more effective and quicker to take effect.

Targeting and understanding depression

This gene research will help to provide new targets for the drugs and improve understanding of the key causes of depression. Researchers will develop a microchip carrying 800 genes to test which ones are active in healthy and depressed animals and humans. They will test the effects of these depression-related genes by altering their activity in genetically modified mice. Animal depression can be observed in mice by lower than usual interest in sweetened water and a tendency not to struggle as much when suspended from their tails.

Fabio Fabbi | EU Commission
Further information:
http://europa.eu.int

More articles from Health and Medicine:

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>