Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EU ‘Newmood’ research investigating genetic links to treat depression with new drugs

29.06.2004


120 million people worldwide suffer from depression. An EU-funded research project launched recently will help to uncover the genetic factors linked to depression to develop new drug treatments. The Integrated Project, named NEWMOOD, has received €7.2 million in funding from the EU’s Sixth Research Framework Programme (FP6) and aims to identify genes involved in triggering depression. This will help researchers to develop new drugs over the next five years to treat it and improve understanding of its causes. The drugs are set to revolutionise antidepressant drugs, which have not changed much over the past 30 years. The project, co-ordinated by the University of Manchester (United Kingdom) involves partners from 13 laboratories in 10 European countries including Estonia, France, Germany, Hungary, Italy, the Netherlands, Poland, Slovenia and Spain.

“Depression is a widespread issue and represents a serious health problem in Europe. Everybody can feel sad. But depression is a severe and long-term problem where people feel hopeless and their professional and private life is hampered,” says European Research Commissioner Philippe Busquin. “Traditional drugs mainly target brain chemicals, and are only partially effective. By looking into the genetics of depression EU researchers can go to the very roots of the illness, and help prevent and cure it in innovative ways. European scientists working together can make a difference and achieve a quantum leap in the fight against depression”.

Feeling blue



Depression, which is marked by symptoms of reduced interest and pleasure, weight and appetite changes, agitation and fatigue, is believed to be caused by genetic and environmental factors. Chronic stress, such as long term illness or bereavement, can trigger depression in those genetically predisposed to the condition. Counselling is often used alongside drug treatment, but the NEWMOOD research hopes to find more effective drug treatments by identifying genes affecting depression in mice and rats, and later in humans.

New drugs to take effect sooner

Currently, most antidepressants work by boosting levels of serotonin in the brain, a chemical that allows nerve cells in the brain to communicate with one another. However, such treatments can take weeks to have an effect and only work in around 50% of patients. It is hoped the new drugs will be more effective and quicker to take effect.

Targeting and understanding depression

This gene research will help to provide new targets for the drugs and improve understanding of the key causes of depression. Researchers will develop a microchip carrying 800 genes to test which ones are active in healthy and depressed animals and humans. They will test the effects of these depression-related genes by altering their activity in genetically modified mice. Animal depression can be observed in mice by lower than usual interest in sweetened water and a tendency not to struggle as much when suspended from their tails.

Fabio Fabbi | EU Commission
Further information:
http://europa.eu.int

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>