Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fat Fighting Undermined By Over Active Eating Pacemaker

11.05.2004


Researchers at the University of Warwick have for the first time been able to detail how and why specific neurons in the brain control the hunger response. They have revealed a set of pacemaker nerve cells in the brain that appear to underlie the drive to feed which itself feeds on a complex web of signals. The level of complexity they have found is such that the system could be much more at risk of serious repercussions from a single error in how those signals are processed than anyone had previously thought. Any number of a range of errors could lead to over activity of these pacemaker cells and explain why many people find difficulty in eating less.



In the research, published in the May Issue of Nature Neuroscience, Dr David Spanswick and his research team in the University of Warwick’s Department of Biological Sciences, looked at a part of the brain called the hypothalamic arcuate nucleus which was known to deal with hunger and satiety signals but how it achieves this is poorly understood. The University of Warwick team have identified very specific neurons that act as feeding ’pacemakers’.

This specific group of neurons- which they have dubbed the ’ARC pacemaker’ produce regular bursts of electrical activity. However these cells integrate and process a wide variety of signals indicating the energy needs of the body signals most often transmitted by the use of chemical messengers such as hormones like ghrelin, released from the gut and leptin from fat cells. The combination of these signals and their integration by the ARC pacemaker is such a finely balanced mechanism that one small error or mutation leading to any inappropriate communication in these pathways could produce a significant untoward affect on human eating or feeding patterns.


The high number of potential ways that this delicately balanced hunger pacemaker can go wrong could explain why many overweight people are unable to address their weight problems by a combination of diet and exercise. In the past people with a weight problem have faced scepticism and doubts as to how hard they were really trying to stick to diet and exercise regimes. This research shows that there may indeed be very good reasons why they seem unable to solve their weight problems simply by employing the usual methods - eating less may be a more difficult and complicated problem than we currently anticipate.

Peter Dunn | University of Warwick
Further information:
http://www.newsandevents.warwick.ac.uk/index.cfm?page=pressrelease&id=1875
http://www.nature.com/cgi-taf/DynaPage.taf?file=/neuro/journal/v7/n5/full/nn1226.html

More articles from Health and Medicine:

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht FAU researchers demonstrate that an oxygen sensor in the body reduces inflammation
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>