Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fat Fighting Undermined By Over Active Eating Pacemaker


Researchers at the University of Warwick have for the first time been able to detail how and why specific neurons in the brain control the hunger response. They have revealed a set of pacemaker nerve cells in the brain that appear to underlie the drive to feed which itself feeds on a complex web of signals. The level of complexity they have found is such that the system could be much more at risk of serious repercussions from a single error in how those signals are processed than anyone had previously thought. Any number of a range of errors could lead to over activity of these pacemaker cells and explain why many people find difficulty in eating less.

In the research, published in the May Issue of Nature Neuroscience, Dr David Spanswick and his research team in the University of Warwick’s Department of Biological Sciences, looked at a part of the brain called the hypothalamic arcuate nucleus which was known to deal with hunger and satiety signals but how it achieves this is poorly understood. The University of Warwick team have identified very specific neurons that act as feeding ’pacemakers’.

This specific group of neurons- which they have dubbed the ’ARC pacemaker’ produce regular bursts of electrical activity. However these cells integrate and process a wide variety of signals indicating the energy needs of the body signals most often transmitted by the use of chemical messengers such as hormones like ghrelin, released from the gut and leptin from fat cells. The combination of these signals and their integration by the ARC pacemaker is such a finely balanced mechanism that one small error or mutation leading to any inappropriate communication in these pathways could produce a significant untoward affect on human eating or feeding patterns.

The high number of potential ways that this delicately balanced hunger pacemaker can go wrong could explain why many overweight people are unable to address their weight problems by a combination of diet and exercise. In the past people with a weight problem have faced scepticism and doubts as to how hard they were really trying to stick to diet and exercise regimes. This research shows that there may indeed be very good reasons why they seem unable to solve their weight problems simply by employing the usual methods - eating less may be a more difficult and complicated problem than we currently anticipate.

Peter Dunn | University of Warwick
Further information:

More articles from Health and Medicine:

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

UCI and NASA document accelerated glacier melting in West Antarctica

26.10.2016 | Earth Sciences

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

More VideoLinks >>>