Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fat Fighting Undermined By Over Active Eating Pacemaker

11.05.2004


Researchers at the University of Warwick have for the first time been able to detail how and why specific neurons in the brain control the hunger response. They have revealed a set of pacemaker nerve cells in the brain that appear to underlie the drive to feed which itself feeds on a complex web of signals. The level of complexity they have found is such that the system could be much more at risk of serious repercussions from a single error in how those signals are processed than anyone had previously thought. Any number of a range of errors could lead to over activity of these pacemaker cells and explain why many people find difficulty in eating less.



In the research, published in the May Issue of Nature Neuroscience, Dr David Spanswick and his research team in the University of Warwick’s Department of Biological Sciences, looked at a part of the brain called the hypothalamic arcuate nucleus which was known to deal with hunger and satiety signals but how it achieves this is poorly understood. The University of Warwick team have identified very specific neurons that act as feeding ’pacemakers’.

This specific group of neurons- which they have dubbed the ’ARC pacemaker’ produce regular bursts of electrical activity. However these cells integrate and process a wide variety of signals indicating the energy needs of the body signals most often transmitted by the use of chemical messengers such as hormones like ghrelin, released from the gut and leptin from fat cells. The combination of these signals and their integration by the ARC pacemaker is such a finely balanced mechanism that one small error or mutation leading to any inappropriate communication in these pathways could produce a significant untoward affect on human eating or feeding patterns.


The high number of potential ways that this delicately balanced hunger pacemaker can go wrong could explain why many overweight people are unable to address their weight problems by a combination of diet and exercise. In the past people with a weight problem have faced scepticism and doubts as to how hard they were really trying to stick to diet and exercise regimes. This research shows that there may indeed be very good reasons why they seem unable to solve their weight problems simply by employing the usual methods - eating less may be a more difficult and complicated problem than we currently anticipate.

Peter Dunn | University of Warwick
Further information:
http://www.newsandevents.warwick.ac.uk/index.cfm?page=pressrelease&id=1875
http://www.nature.com/cgi-taf/DynaPage.taf?file=/neuro/journal/v7/n5/full/nn1226.html

More articles from Health and Medicine:

nachricht Research offers clues for improved influenza vaccine design
09.04.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Injecting gene cocktail into mouse pancreas leads to humanlike tumors
06.04.2018 | University of Texas Health Science Center at San Antonio

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>