Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Computer Technique Differentiates Malignant and Benign Calcifications on Digital Mammograms

04.05.2004


Researchers at the University of Chicago have developed a computer technique that “learns” how benign and malignant breast calcifications appear on digital mammograms so not only can it detect them, but it can also predict the likelihood that the calcifications are associated with cancer.



“In this study, we analyzed 49 full-field digital mammograms, 19 of which showed cancer,” said Rich Rana, a medical student at the University of Chicago. Four mammography specialists read the images and electronically put a box around the suspicious calcifications. The computer then automatically detected the calcifications within the box, analyzed them and calculated the probability of cancer, Rana said.

The system proved to consistently achieve performance comparable to the radiologists in classifying malignant and benign calcifications, regardless of who was using it, Rana added. One technique for rating the computer’s effectiveness is to give it one malignant case and one benign case and then test its ability to determine which is which, Rana said. Using this technique, the radiologist had a 72% chance of making the correct diagnosis, and the computer had a 79% chance.


This study was one of the first to test the effectiveness of computer-aided diagnoses on full-field digital mammograms versus plain film mammograms. In addition, this system employs artificial intelligence in that the computer “learns” how to automatically locate the calcifications and predict whether they are benign or malignant, Rana said. In the future the radiologist’s assessment could be compared with the computer’s assessment as a “double-check” for the diagnosis of breast cancer, Rana said.

This research was lead by Dr. Yulei Jiang, assistant professor of radiology at the University of Chicago. The research was funded by the National Cancer Institute, the U.S. Army Medical Research and Material Command, and the National Institutes of Health. Rana will present the study on May 4 at the American Roentgen Ray Society Annual Meeting in Miami Beach, FL.

Keri J. Sperry | ARRS
Further information:
http://www.arrs.org/scriptcontent/pressroom/archive/2004/r040504g.cfm

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>