Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Computer Technique Differentiates Malignant and Benign Calcifications on Digital Mammograms

04.05.2004


Researchers at the University of Chicago have developed a computer technique that “learns” how benign and malignant breast calcifications appear on digital mammograms so not only can it detect them, but it can also predict the likelihood that the calcifications are associated with cancer.



“In this study, we analyzed 49 full-field digital mammograms, 19 of which showed cancer,” said Rich Rana, a medical student at the University of Chicago. Four mammography specialists read the images and electronically put a box around the suspicious calcifications. The computer then automatically detected the calcifications within the box, analyzed them and calculated the probability of cancer, Rana said.

The system proved to consistently achieve performance comparable to the radiologists in classifying malignant and benign calcifications, regardless of who was using it, Rana added. One technique for rating the computer’s effectiveness is to give it one malignant case and one benign case and then test its ability to determine which is which, Rana said. Using this technique, the radiologist had a 72% chance of making the correct diagnosis, and the computer had a 79% chance.


This study was one of the first to test the effectiveness of computer-aided diagnoses on full-field digital mammograms versus plain film mammograms. In addition, this system employs artificial intelligence in that the computer “learns” how to automatically locate the calcifications and predict whether they are benign or malignant, Rana said. In the future the radiologist’s assessment could be compared with the computer’s assessment as a “double-check” for the diagnosis of breast cancer, Rana said.

This research was lead by Dr. Yulei Jiang, assistant professor of radiology at the University of Chicago. The research was funded by the National Cancer Institute, the U.S. Army Medical Research and Material Command, and the National Institutes of Health. Rana will present the study on May 4 at the American Roentgen Ray Society Annual Meeting in Miami Beach, FL.

Keri J. Sperry | ARRS
Further information:
http://www.arrs.org/scriptcontent/pressroom/archive/2004/r040504g.cfm

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>