Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newborn Testing for Immune Disorders Could Save Lives

22.04.2004


A simple, inexpensive blood test performed at birth to screen for immune disorders could dramatically increase the chance of survival for babies born with such potentially fatal disorders as severe combined immunodeficiency disease (SCID).


Rebecca H. Buckley, M.D.
Credit: Duke University Medical Center



Physicians at Duke University Medical Center have performed stem cell transplants in 136 infants with SCID in the past 22 years. The survival rate for 38 infants receiving transplants in the first 3.5 months of life is 97 percent, but the rate drops to 69 percent for infants who were transplanted after that age, Rebecca Buckley, M.D., reports in the April 23, 2004, Annual Review of Immunology.

The main cause for the drop in survival rate is serious infections SCID babies develop in the first few months of life. Infants with SCID have little or no immune system. Without treatment, they die of infection before their first or second birthdays. But for infants without a known family history of SCID, the average age of referral for immune testing is approximately 6 months, Buckley said. "The tragedy is that most patients are critically ill by then,’’ she said.


Buckley believes that all newborns should be screened for immune deficiency disorders at birth. "SCID is a pediatric emergency. There is no screening for any primary immunodeficiency disease at birth or during childhood and adulthood in any country. Thus, most patients are not diagnosed until they develop a serious infection, which certainly adversely affects the outcome of therapy," said Buckley, a professor in Duke’s division of pediatric allergy and immunology.

Early treatment also reduces costs -- a transplant in the first three months of life can cost less than $50,000, but the cost of care skyrockets up to millions of dollars for seriously ill patients, with less guarantee of success. And SCID patients who received stem cell transplants from related donors within the first 28 days of life developed a more robust immune system, with higher levels of T cell reconstitution and output from the thymus gland. T cells are white blood cells that are essential for normal function of the immune system, Buckley reports.

Nearly all SCID cases can be diagnosed at birth by counting the number of lymphocytes, a type of white blood cell, present in umbilical cord blood, Buckley said. Infants with SCID have a profound deficiency of lymphocytes, due to the deficiency of T cells that help fight infections. Children with other immune disorders could also be identified through this test, which costs an average of $50 at a commercial laboratory. Researchers at the National Humane Genome Research Institute are developing a test for immunodeficiency disorders that could be performed on the small blood sample now taken from newborns to screen for certain metabolic disorders.

Nine forms of SCID have been identified in the past 10 years, caused by mutations of single genes. However, Buckley has treated 30 patients without mutations in the known SCID genes, making it likely other causes are yet to be discovered. The most common form of SCID is X-linked recessive, a mutation inherited on the X chromosome. Because X-linked recessive genes are expressed in girls only if a child receives two copies of the gene -- one from each parent -- the disease is more common in boys, who only need one copy for an X-linked recessive gene to be expressed. SCID-X1 accounts for 46 percent of U.S. cases.

The incidence of SCID has been projected to range from one in every 100,000 to 500,000 births -- more frequent than disorders such as Huntington’s disease. "However, no one truly knows how common this disease is. I suspect that it is much more common than thought because a lot of SCID patients probably die before their disease is recognized," Buckley said.

Buckley and her colleagues at Duke University Medical Center treat SCID patients via stem cell transplants derived from donor bone marrow, typically from a parent or matched sibling. Transplant recipients do not need pretransplant chemotherapy or prophylactic treatment for graft-versus-host disease. Infants with SCID have a complete absence of T cell function, so they cannot reject the transplants. The bone marrow is processed to remove T cells, preventing the donor T cells from attacking the recipient, known as graft-versus-host disease. Mature, donor-derived, T cells typically appear in SCID patients within 90 to 120 days after transplant. The success of treatment varies among different forms of SCID.

Clinicians are striving to improve the success of transplant therapy and create more robust immune systems by giving higher numbers of stem cells in preparations nearly devoid of T cells, Buckley added. "If the imperfect results seen with stem cell therapy in the past were due to an insufficient number of stem cells, this approach should result in better immune reconstitution. The only remaining obstacle would then be to ensure diagnosis is made early before untreatable infections develop," she said.

Of the 136 SCID patients treated at Duke, 105 (77 percent) are alive. None show any evidence of susceptibility to opportunistic infections and most are in good general health. The oldest is 22 years of age. All 15 recipients of marrow from perfectly matched donors and 89 of the 121 recipients of T cell-depleted marrow from related donors are among the survivors.

Of the 38 infants transplanted during the first 3.5 months of life, 37 (97 percent) survive, compared to 68 survivors among the 98 transplanted after that age (69 percent success). Twenty-four of the 31 deaths occurred from viral infections. Graft-versus-host-disease (GVHD) occurred in 40 of the 121 patients given T cell-depleted parental bone marrow, but most of the GVHD was mild and required no treatment; there were no deaths from GVHD. In 35 of 40 GVHD cases, the complication occurred when there was persistence of transplacentally transferred maternal T cells.

Becky Oskin | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7547

More articles from Health and Medicine:

nachricht Malaria Already Endemic in the Mediterranean by the Roman Period
27.07.2017 | Universität Zürich

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>