Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery sheds light on how cancer cells grow and divide

20.04.2004


A Mayo Clinic discovery about a protein known as Dynamin-2 has thrown conventional wisdom for a loop. Finding the protein on the centrosome, a minute structure near a cell’s nucleus, may lead to new strategies for stopping cancer growth.

The Mayo team, already known for discovering several families of dynamins, this time discovered them -- not on a membrane, as expected -- but on the unlikely centrosome which has no membrane. It was the last place they expected to find them, but the surprise finding offers a new lead in the fight against cancer.

"These findings provide us with a basic understanding of how normal and cancer cells are organized; how they divide and how they might grow and die -- which is an important part of cancer," says Mark McNiven, Ph.D., the cell biologist who led the Mayo Clinic research team’s investigation. "A lot of cancers, you could argue, don’t grow faster; they just don’t die. So this discovery will improve our understanding of this very relevant cellular process. It promotes understanding the cell at its most basic level, giving us a new layer of detail."



The research is featured in the April issue of Nature Cell Biology (http://www.nature.com/ncb/). The journal’s editor, Dr. Bernd Pulverer, noted the Mayo results as a novel insight into how cells work. "The Mayo Clinic group has discovered a rather unexpected and surprising connection ... While it remains unclear how exactly Dynamin-2 functions at the centrosome, it clearly localizes to this important structure and it is critical to maintaining an intact centrosome structure. We will follow with great interest further insights into how Dynamin-2 functions in this context, and if this connection serves to integrate signals from the cell surface and membrane trafficking with cell division."

Significance of the Mayo Clinic Discovery

The newly described relationship between Dynamin-2 and the centrosome poses the intriguing possibility that their partnership connects the cell’s surface and its interior via signals that coordinate and organize cell division. This is compelling because cancer, in essence, is cell division out of control. Taking control of a cell’s "switchboard" -- if that’s what this partnership turns out to be -- would be a promising potential strategy to pursue in designing new drugs for cancer treatment.

Scientific Background

The centrosome is a tiny cellular organ that helps organize chromosomes during cell division. It’s also a signaling center for the cell, and as such is involved in the natural programmed cell death called apoptosis. In yet another role, the centrosome is important in setting up the two poles of the cell during mitosis, when cells segregate their chromosomal material and divide. Both these functions, when disrupted, can cause disease.

Dynamin-2 is an enzyme that helps cells form vesicles used to internalize agents from the cell’s external environment. Through a series of laboratory manipulations of mammalian cells that included disrupting the centrosome, the research team was able to demonstrate that Dynamin-2 is a normal and necessary component of the centrosome. "When we reduced the levels of dynamin in cells, this led to an impairment of the centrosome," Dr. McNiven explains. The researchers also identified the part of Dynamin-2 that connects it to the centrosome. On the centrosome, they identified the part that recruits and binds Dynamin-2. "As a result of all this investigation, we now know that Dynamin-2 is vital to normal cell structure and organization," Dr. McNiven says.

The next step is to learn more about the relationship and roles of this partnership. Says Dr. McNiven: "Is the enzymatic activity of Dynamin-2 important in this process? How is it regulated? How does it affect the cell cycle? All these are great questions that will enable us to pursue the ramifications of our discovery."


[Thompson H.M., Cao H., Chen J., Euteneuer, U., McNiven, M.A. (2004.) Dynamin-2 binds gamma-tubulin and participates in centrosome cohesion. Nat. Cell Biol. Apr;6(4):335-42. Epub 2004 Mar 14.]

Bob Nellis | Mayo Clinic
Further information:
http://mayo.edu/

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>