Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery sheds light on how cancer cells grow and divide

20.04.2004


A Mayo Clinic discovery about a protein known as Dynamin-2 has thrown conventional wisdom for a loop. Finding the protein on the centrosome, a minute structure near a cell’s nucleus, may lead to new strategies for stopping cancer growth.

The Mayo team, already known for discovering several families of dynamins, this time discovered them -- not on a membrane, as expected -- but on the unlikely centrosome which has no membrane. It was the last place they expected to find them, but the surprise finding offers a new lead in the fight against cancer.

"These findings provide us with a basic understanding of how normal and cancer cells are organized; how they divide and how they might grow and die -- which is an important part of cancer," says Mark McNiven, Ph.D., the cell biologist who led the Mayo Clinic research team’s investigation. "A lot of cancers, you could argue, don’t grow faster; they just don’t die. So this discovery will improve our understanding of this very relevant cellular process. It promotes understanding the cell at its most basic level, giving us a new layer of detail."



The research is featured in the April issue of Nature Cell Biology (http://www.nature.com/ncb/). The journal’s editor, Dr. Bernd Pulverer, noted the Mayo results as a novel insight into how cells work. "The Mayo Clinic group has discovered a rather unexpected and surprising connection ... While it remains unclear how exactly Dynamin-2 functions at the centrosome, it clearly localizes to this important structure and it is critical to maintaining an intact centrosome structure. We will follow with great interest further insights into how Dynamin-2 functions in this context, and if this connection serves to integrate signals from the cell surface and membrane trafficking with cell division."

Significance of the Mayo Clinic Discovery

The newly described relationship between Dynamin-2 and the centrosome poses the intriguing possibility that their partnership connects the cell’s surface and its interior via signals that coordinate and organize cell division. This is compelling because cancer, in essence, is cell division out of control. Taking control of a cell’s "switchboard" -- if that’s what this partnership turns out to be -- would be a promising potential strategy to pursue in designing new drugs for cancer treatment.

Scientific Background

The centrosome is a tiny cellular organ that helps organize chromosomes during cell division. It’s also a signaling center for the cell, and as such is involved in the natural programmed cell death called apoptosis. In yet another role, the centrosome is important in setting up the two poles of the cell during mitosis, when cells segregate their chromosomal material and divide. Both these functions, when disrupted, can cause disease.

Dynamin-2 is an enzyme that helps cells form vesicles used to internalize agents from the cell’s external environment. Through a series of laboratory manipulations of mammalian cells that included disrupting the centrosome, the research team was able to demonstrate that Dynamin-2 is a normal and necessary component of the centrosome. "When we reduced the levels of dynamin in cells, this led to an impairment of the centrosome," Dr. McNiven explains. The researchers also identified the part of Dynamin-2 that connects it to the centrosome. On the centrosome, they identified the part that recruits and binds Dynamin-2. "As a result of all this investigation, we now know that Dynamin-2 is vital to normal cell structure and organization," Dr. McNiven says.

The next step is to learn more about the relationship and roles of this partnership. Says Dr. McNiven: "Is the enzymatic activity of Dynamin-2 important in this process? How is it regulated? How does it affect the cell cycle? All these are great questions that will enable us to pursue the ramifications of our discovery."


[Thompson H.M., Cao H., Chen J., Euteneuer, U., McNiven, M.A. (2004.) Dynamin-2 binds gamma-tubulin and participates in centrosome cohesion. Nat. Cell Biol. Apr;6(4):335-42. Epub 2004 Mar 14.]

Bob Nellis | Mayo Clinic
Further information:
http://mayo.edu/

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>